An exploratory study of host polymorphisms in genes that clinically characterize breast cancer tumors and pretreatment cognitive performance in breast cancer survivors

Theresa A Koleck,1,2 Catherine M Bender,1 Beth Z Clark,3,4 Christopher M Ryan,5,6 Puja Ghotkar,1 Adam Brufsky,4,7,8 Priscilla F McAuliffe,4,8,9 Priya Rastogi,4,7 Susan M Sereika,1,10,11 Yvette P Conley,1,12 1School of Nursing, University of Pittsburgh, Pittsburgh, PA, 2School of Nursing, Columbia Un...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Koleck TA, Bender CM, Clark BZ, Ryan CM, Ghotkar P, Brufsky A, McAuliffe PF, Rastogi P, Sereika SM, Conley YP
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2017
Materias:
Acceso en línea:https://doaj.org/article/903444e4edfb4af0b038492ee4480d74
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Theresa A Koleck,1,2 Catherine M Bender,1 Beth Z Clark,3,4 Christopher M Ryan,5,6 Puja Ghotkar,1 Adam Brufsky,4,7,8 Priscilla F McAuliffe,4,8,9 Priya Rastogi,4,7 Susan M Sereika,1,10,11 Yvette P Conley,1,12 1School of Nursing, University of Pittsburgh, Pittsburgh, PA, 2School of Nursing, Columbia University, New York, NY, 3Division of Gynecologic Pathology, Magee-Womens Hospital of University of Pittsburgh Medical Center (UPMC), 4School of Medicine, 5Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 6Department of Psychiatry, University of California San Francisco, San Francisco, CA, 7Division of Hematology/Oncology, Magee-Womens Hospital of UPMC, 8University of Pittsburgh Cancer Institute, 9Division of Breast Surgical Oncology, Magee-Womens Hospital of UPMC, 10Department of Biostatistics, 11Department of Epidemiology, 12Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA Purpose: Inspired by the hypothesis that heterogeneity in the biology of breast cancers at the cellular level may account for cognitive dysfunction symptom variability in survivors, the current study explored relationships between host single-nucleotide polymorphisms (SNPs) in 25 breast cancer-related candidate genes (AURKA, BAG1, BCL2, BIRC5, CCNB1, CD68, CENPA, CMC2, CTSL2, DIAPH3, ERBB2, ESR1, GRB7, GSTM1, MELK, MKI67, MMP11, MYBL2, NDC80, ORC6, PGR, RACGAP1, RFC4, RRM2, and SCUBE2), identified from clinically relevant prognostic multigene-expression profiles for breast cancer, and pretreatment cognitive performance.Patients and methods: The sample (n=220) was comprised of 138 postmenopausal women newly diagnosed with early stage breast cancer and 82 postmenopausal age- and education-matched healthy controls without breast cancer. Cognitive performance was assessed after primary surgery but prior to initiation of adjuvant chemotherapy and/or hormonal therapy using a comprehensive battery of neuropsychological tests encompassing eight cognitive function composite domains: attention, concentration, executive function, mental flexibility, psychomotor speed, verbal memory, visual memory, and visual working memory. In total, 131 SNPs were included in the analysis. Standard and robust multiple linear regression modeling was used to examine relationships between each domain and the presence or absence of one or more minor alleles for each SNP. Genetic risk/protection scores (GRSs) were calculated for each domain to evaluate the collective effect of possession of multiple risk/protective alleles.Results: With the exception of CMC2, MMP11, and RACGAP1, significant (P<0.05) SNP main effect and/or SNP by future prescribed treatment group interactions were observed for every gene between at least one domain and one or more SNPs. All GRSs were found to be significantly (P<0.001) associated with each respective domain score.Conclusion: Associations between host SNPs and computed GRSs and variability in pretreatment cognitive function performance support the study hypothesis, and warrant further investigations to identify biomarkers for breast cancer-related cognitive dysfunction. Keywords: breast neoplasms, genetics, cognition, biomarkers