Reconfigurable Architecture and Dataflow for Memory Traffic Minimization of CNNs Computation
Computation of convolutional neural network (CNN) requires a significant amount of memory access, which leads to lots of energy consumption. As the increase of neural network scale, this phenomenon is further obvious, the energy consumption of memory access and data migration between on-chip buffer...
Guardado en:
Autores principales: | Wei-Kai Cheng, Xiang-Yi Liu, Hsin-Tzu Wu, Hsin-Yi Pai, Po-Yao Chung |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9035f02ded064c9f92bef9c7cfe74fd1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Performance Evaluation of DRAM Access for In-Memory Databases
por: Zhang Qian, et al.
Publicado: (2021) -
Emergence of Lie Symmetries in Functional Architectures Learned by CNNs
por: Federico Bertoni, et al.
Publicado: (2021) -
Data Curation Implications of Qualitative Data Reuse and Big Social Research
por: Sara Mannheimer
Publicado: (2021) -
Interference Signal Identification of Sensor Array Based on Convolutional Neural Network and FPGA Implementation
por: Lin Huang, et al.
Publicado: (2021) -
The importance of adherence to international standards for depositing open data in public repositories
por: Diego A. Forero, et al.
Publicado: (2021)