Reconfigurable Architecture and Dataflow for Memory Traffic Minimization of CNNs Computation
Computation of convolutional neural network (CNN) requires a significant amount of memory access, which leads to lots of energy consumption. As the increase of neural network scale, this phenomenon is further obvious, the energy consumption of memory access and data migration between on-chip buffer...
Enregistré dans:
Auteurs principaux: | Wei-Kai Cheng, Xiang-Yi Liu, Hsin-Tzu Wu, Hsin-Yi Pai, Po-Yao Chung |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/9035f02ded064c9f92bef9c7cfe74fd1 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A Performance Evaluation of DRAM Access for In-Memory Databases
par: Zhang Qian, et autres
Publié: (2021) -
Emergence of Lie Symmetries in Functional Architectures Learned by CNNs
par: Federico Bertoni, et autres
Publié: (2021) -
Data Curation Implications of Qualitative Data Reuse and Big Social Research
par: Sara Mannheimer
Publié: (2021) -
Interference Signal Identification of Sensor Array Based on Convolutional Neural Network and FPGA Implementation
par: Lin Huang, et autres
Publié: (2021) -
The importance of adherence to international standards for depositing open data in public repositories
par: Diego A. Forero, et autres
Publié: (2021)