Automated spectroscopic modelling with optimised convolutional neural networks
Abstract Convolutional neural networks (CNN) for spectroscopic modelling are currently tuned manually, and the effects of their hyperparameters are not analysed. These can result in sub-optimal models. Here, we propose an approach to tune one-dimensional CNN (1D-CNNs) automatically. It consists of a...
Guardado en:
Autores principales: | Zefang Shen, R. A. Viscarra Rossel |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9041605288ac4d19a797da78cc01ff0b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Wavelet geographically weighted regression for spectroscopic modelling of soil properties
por: Yongze Song, et al.
Publicado: (2021) -
Automated stomata detection in oil palm with convolutional neural network
por: Qi Bin Kwong, et al.
Publicado: (2021) -
Automated Training of Deep Convolutional Neural Networks for Cell Segmentation
por: Sajith Kecheril Sadanandan, et al.
Publicado: (2017) -
ANMAF: an automated neuronal morphology analysis framework using convolutional neural networks
por: Ling Tong, et al.
Publicado: (2021) -
Automated detection of mouse scratching behaviour using convolutional recurrent neural network
por: Koji Kobayashi, et al.
Publicado: (2021)