Multimodal Identification Based on Fingerprint and Face Images via a Hetero-Associative Memory Method
Multimodal identification, which exploits biometric information from more than one biometric modality, is more secure and reliable than unimodal identification. Face recognition and fingerprint recognition have received a lot of attention in recent years for their unique advantages. However, how to...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/90499071cfde43a3a627e9020a4bfe6d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:90499071cfde43a3a627e9020a4bfe6d |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:90499071cfde43a3a627e9020a4bfe6d2021-11-25T18:17:44ZMultimodal Identification Based on Fingerprint and Face Images via a Hetero-Associative Memory Method10.3390/math92229762227-7390https://doaj.org/article/90499071cfde43a3a627e9020a4bfe6d2021-11-01T00:00:00Zhttps://www.mdpi.com/2227-7390/9/22/2976https://doaj.org/toc/2227-7390Multimodal identification, which exploits biometric information from more than one biometric modality, is more secure and reliable than unimodal identification. Face recognition and fingerprint recognition have received a lot of attention in recent years for their unique advantages. However, how to integrate these two modalities and develop an effective multimodal identification system are still challenging problems. Hetero-associative memory (HAM) models store some patterns that can be reliably retrieved from other patterns in a robust way. Therefore, in this paper, face and fingerprint biometric features are integrated by the use of a hetero-associative memory method for multimodal identification. The proposed multimodal identification system can integrate face and fingerprint biometric features at feature level when the system converges to the state of asymptotic stability. In experiment 1, the predicted fingerprint by inputting an authorized user’s face is compared with the real fingerprint, and the matching rate of each group is higher than the given threshold. In experiment 2 and experiment 3, the predicted fingerprint by inputting the face of an unauthorized user and the stealing authorized user’s face is compared with its real fingerprint input, respectively, and the matching rate of each group is lower than the given threshold. The experimental results prove the feasibility of the proposed multimodal identification system.Qi HanHeng YangTengfei WengGuorong ChenJinyuan LiuYuan TianMDPI AGarticlestabilitymultimodal identificationfingerprint recognitionface recognitionMathematicsQA1-939ENMathematics, Vol 9, Iss 2976, p 2976 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
stability multimodal identification fingerprint recognition face recognition Mathematics QA1-939 |
spellingShingle |
stability multimodal identification fingerprint recognition face recognition Mathematics QA1-939 Qi Han Heng Yang Tengfei Weng Guorong Chen Jinyuan Liu Yuan Tian Multimodal Identification Based on Fingerprint and Face Images via a Hetero-Associative Memory Method |
description |
Multimodal identification, which exploits biometric information from more than one biometric modality, is more secure and reliable than unimodal identification. Face recognition and fingerprint recognition have received a lot of attention in recent years for their unique advantages. However, how to integrate these two modalities and develop an effective multimodal identification system are still challenging problems. Hetero-associative memory (HAM) models store some patterns that can be reliably retrieved from other patterns in a robust way. Therefore, in this paper, face and fingerprint biometric features are integrated by the use of a hetero-associative memory method for multimodal identification. The proposed multimodal identification system can integrate face and fingerprint biometric features at feature level when the system converges to the state of asymptotic stability. In experiment 1, the predicted fingerprint by inputting an authorized user’s face is compared with the real fingerprint, and the matching rate of each group is higher than the given threshold. In experiment 2 and experiment 3, the predicted fingerprint by inputting the face of an unauthorized user and the stealing authorized user’s face is compared with its real fingerprint input, respectively, and the matching rate of each group is lower than the given threshold. The experimental results prove the feasibility of the proposed multimodal identification system. |
format |
article |
author |
Qi Han Heng Yang Tengfei Weng Guorong Chen Jinyuan Liu Yuan Tian |
author_facet |
Qi Han Heng Yang Tengfei Weng Guorong Chen Jinyuan Liu Yuan Tian |
author_sort |
Qi Han |
title |
Multimodal Identification Based on Fingerprint and Face Images via a Hetero-Associative Memory Method |
title_short |
Multimodal Identification Based on Fingerprint and Face Images via a Hetero-Associative Memory Method |
title_full |
Multimodal Identification Based on Fingerprint and Face Images via a Hetero-Associative Memory Method |
title_fullStr |
Multimodal Identification Based on Fingerprint and Face Images via a Hetero-Associative Memory Method |
title_full_unstemmed |
Multimodal Identification Based on Fingerprint and Face Images via a Hetero-Associative Memory Method |
title_sort |
multimodal identification based on fingerprint and face images via a hetero-associative memory method |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/90499071cfde43a3a627e9020a4bfe6d |
work_keys_str_mv |
AT qihan multimodalidentificationbasedonfingerprintandfaceimagesviaaheteroassociativememorymethod AT hengyang multimodalidentificationbasedonfingerprintandfaceimagesviaaheteroassociativememorymethod AT tengfeiweng multimodalidentificationbasedonfingerprintandfaceimagesviaaheteroassociativememorymethod AT guorongchen multimodalidentificationbasedonfingerprintandfaceimagesviaaheteroassociativememorymethod AT jinyuanliu multimodalidentificationbasedonfingerprintandfaceimagesviaaheteroassociativememorymethod AT yuantian multimodalidentificationbasedonfingerprintandfaceimagesviaaheteroassociativememorymethod |
_version_ |
1718411395154837504 |