The effect of self-limiting on the prevention and control of the diffuse COVID-19 epidemic with delayed and temporal-spatial heterogeneous

Abstract Background The global spread of the novel coronavirus pneumonia is still continuing, and a new round of more serious outbreaks has even begun in some countries. In this context, this paper studies the dynamics of a type of delayed reaction-diffusion novel coronavirus pneumonia model with re...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cheng-Cheng Zhu, Jiang Zhu
Formato: article
Lenguaje:EN
Publicado: BMC 2021
Materias:
Acceso en línea:https://doaj.org/article/9060e9ff7720400f90fbc99cc3724178
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:9060e9ff7720400f90fbc99cc3724178
record_format dspace
spelling oai:doaj.org-article:9060e9ff7720400f90fbc99cc37241782021-11-14T12:44:14ZThe effect of self-limiting on the prevention and control of the diffuse COVID-19 epidemic with delayed and temporal-spatial heterogeneous10.1186/s12879-021-06670-y1471-2334https://doaj.org/article/9060e9ff7720400f90fbc99cc37241782021-11-01T00:00:00Zhttps://doi.org/10.1186/s12879-021-06670-yhttps://doaj.org/toc/1471-2334Abstract Background The global spread of the novel coronavirus pneumonia is still continuing, and a new round of more serious outbreaks has even begun in some countries. In this context, this paper studies the dynamics of a type of delayed reaction-diffusion novel coronavirus pneumonia model with relapse and self-limiting treatment in a temporal-spatial heterogeneous environment. Methods First, focus on the self-limiting characteristics of COVID-19, incorporate the relapse and self-limiting treatment factors into the diffusion model, and study the influence of self-limiting treatment on the diffusion of the epidemic. Second, because the traditional Lyapunov stability method is difficult to determine the spread of the epidemic with relapse and self-limiting treatment, we introduce a completely different method, relying on the existence conditions of the exponential attractor of our newly established in the infinite-dimensional dynamic system to determine the diffusion of novel coronavirus pneumonia. Third, relapse and self-limiting treatment have led to a change in the structure of the delayed diffusion COVID-19 model, and the traditional basic reproduction number $$R_0$$ R 0 no longer has threshold characteristics. With the help of the Krein-Rutman theorem and the eigenvalue method, we studied the threshold characteristics of the principal eigenvalue and found that it can be used as a new threshold to describe the diffusion of the epidemic. Results Our results prove that the principal eigenvalue $$\uplambda ^{*}$$ λ ∗ of the delayed reaction-diffusion COVID-19 system with relapse and self-limiting treatment can replace the basic reproduction number $$R_0$$ R 0 to describe the threshold effect of disease transmission. Combine with the latest official data and the prevention and control strategies, some numerical simulations on the stability and global exponential attractiveness of the diffusion of the COVID-19 epidemic in China and the USA are given. Conclusions Through the comparison of numerical simulations, we find that self-limiting treatment can significantly promote the prevention and control of the epidemic. And if the free activities of asymptomatic infected persons are not restricted, it will seriously hinder the progress of epidemic prevention and control.Cheng-Cheng ZhuJiang ZhuBMCarticleSelf-limiting epidemicsCOVID-19Global exponential attractorDelayedTemporal-spatial heterogeneousInfectious and parasitic diseasesRC109-216ENBMC Infectious Diseases, Vol 21, Iss 1, Pp 1-22 (2021)
institution DOAJ
collection DOAJ
language EN
topic Self-limiting epidemics
COVID-19
Global exponential attractor
Delayed
Temporal-spatial heterogeneous
Infectious and parasitic diseases
RC109-216
spellingShingle Self-limiting epidemics
COVID-19
Global exponential attractor
Delayed
Temporal-spatial heterogeneous
Infectious and parasitic diseases
RC109-216
Cheng-Cheng Zhu
Jiang Zhu
The effect of self-limiting on the prevention and control of the diffuse COVID-19 epidemic with delayed and temporal-spatial heterogeneous
description Abstract Background The global spread of the novel coronavirus pneumonia is still continuing, and a new round of more serious outbreaks has even begun in some countries. In this context, this paper studies the dynamics of a type of delayed reaction-diffusion novel coronavirus pneumonia model with relapse and self-limiting treatment in a temporal-spatial heterogeneous environment. Methods First, focus on the self-limiting characteristics of COVID-19, incorporate the relapse and self-limiting treatment factors into the diffusion model, and study the influence of self-limiting treatment on the diffusion of the epidemic. Second, because the traditional Lyapunov stability method is difficult to determine the spread of the epidemic with relapse and self-limiting treatment, we introduce a completely different method, relying on the existence conditions of the exponential attractor of our newly established in the infinite-dimensional dynamic system to determine the diffusion of novel coronavirus pneumonia. Third, relapse and self-limiting treatment have led to a change in the structure of the delayed diffusion COVID-19 model, and the traditional basic reproduction number $$R_0$$ R 0 no longer has threshold characteristics. With the help of the Krein-Rutman theorem and the eigenvalue method, we studied the threshold characteristics of the principal eigenvalue and found that it can be used as a new threshold to describe the diffusion of the epidemic. Results Our results prove that the principal eigenvalue $$\uplambda ^{*}$$ λ ∗ of the delayed reaction-diffusion COVID-19 system with relapse and self-limiting treatment can replace the basic reproduction number $$R_0$$ R 0 to describe the threshold effect of disease transmission. Combine with the latest official data and the prevention and control strategies, some numerical simulations on the stability and global exponential attractiveness of the diffusion of the COVID-19 epidemic in China and the USA are given. Conclusions Through the comparison of numerical simulations, we find that self-limiting treatment can significantly promote the prevention and control of the epidemic. And if the free activities of asymptomatic infected persons are not restricted, it will seriously hinder the progress of epidemic prevention and control.
format article
author Cheng-Cheng Zhu
Jiang Zhu
author_facet Cheng-Cheng Zhu
Jiang Zhu
author_sort Cheng-Cheng Zhu
title The effect of self-limiting on the prevention and control of the diffuse COVID-19 epidemic with delayed and temporal-spatial heterogeneous
title_short The effect of self-limiting on the prevention and control of the diffuse COVID-19 epidemic with delayed and temporal-spatial heterogeneous
title_full The effect of self-limiting on the prevention and control of the diffuse COVID-19 epidemic with delayed and temporal-spatial heterogeneous
title_fullStr The effect of self-limiting on the prevention and control of the diffuse COVID-19 epidemic with delayed and temporal-spatial heterogeneous
title_full_unstemmed The effect of self-limiting on the prevention and control of the diffuse COVID-19 epidemic with delayed and temporal-spatial heterogeneous
title_sort effect of self-limiting on the prevention and control of the diffuse covid-19 epidemic with delayed and temporal-spatial heterogeneous
publisher BMC
publishDate 2021
url https://doaj.org/article/9060e9ff7720400f90fbc99cc3724178
work_keys_str_mv AT chengchengzhu theeffectofselflimitingonthepreventionandcontrolofthediffusecovid19epidemicwithdelayedandtemporalspatialheterogeneous
AT jiangzhu theeffectofselflimitingonthepreventionandcontrolofthediffusecovid19epidemicwithdelayedandtemporalspatialheterogeneous
AT chengchengzhu effectofselflimitingonthepreventionandcontrolofthediffusecovid19epidemicwithdelayedandtemporalspatialheterogeneous
AT jiangzhu effectofselflimitingonthepreventionandcontrolofthediffusecovid19epidemicwithdelayedandtemporalspatialheterogeneous
_version_ 1718429061706940416