A high-performance Al-air fuel cell using a mesh-encapsulated anode via Al–Zn energy transfer
Summary: Aluminum-air fuel cells attract more attention because of their high specific energy, low cost, and friendly environment. However, the problems of hydrogen evolution corrosion and low anode efficiency of aluminum-air fuel cells remain unresolved. Herein, we propose an aluminum-air fuel cell...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/90620999df72445ba9071fa672c04c82 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:90620999df72445ba9071fa672c04c82 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:90620999df72445ba9071fa672c04c822021-11-20T05:08:58ZA high-performance Al-air fuel cell using a mesh-encapsulated anode via Al–Zn energy transfer2589-004210.1016/j.isci.2021.103259https://doaj.org/article/90620999df72445ba9071fa672c04c822021-11-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2589004221012281https://doaj.org/toc/2589-0042Summary: Aluminum-air fuel cells attract more attention because of their high specific energy, low cost, and friendly environment. However, the problems of hydrogen evolution corrosion and low anode efficiency of aluminum-air fuel cells remain unresolved. Herein, we propose an aluminum-air fuel cell using a mesh-encapsulated anode, where the energy redistribution can be achieved and the discharge performance of the fuel cell can be highly improved. The results show that the highest inhibition efficiency is 73.930% when the aluminum plate is immersed in 6 M potassium hydroxide solution containing 100% zinc oxide. The highest anode efficiency is up to 61.740% when the fuel cell using a mesh-encapsulated anode is discharged at 20 mA/cm2, which is more than 2 times than that of no mesh, and the highest capacity can reach 1839.842 mAh/g, which is 101.623% higher than before optimization. Thus, our studies are very instructive for the large-scale application of aluminum-air fuel cells.Manhui WeiKeliang WangYayu ZuoJian LiuPengfei ZhangPucheng PeiSiyuan ZhaoYawen LiJunfeng ChenElsevierarticleEngineeringMaterials applicationDevicesScienceQENiScience, Vol 24, Iss 11, Pp 103259- (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Engineering Materials application Devices Science Q |
spellingShingle |
Engineering Materials application Devices Science Q Manhui Wei Keliang Wang Yayu Zuo Jian Liu Pengfei Zhang Pucheng Pei Siyuan Zhao Yawen Li Junfeng Chen A high-performance Al-air fuel cell using a mesh-encapsulated anode via Al–Zn energy transfer |
description |
Summary: Aluminum-air fuel cells attract more attention because of their high specific energy, low cost, and friendly environment. However, the problems of hydrogen evolution corrosion and low anode efficiency of aluminum-air fuel cells remain unresolved. Herein, we propose an aluminum-air fuel cell using a mesh-encapsulated anode, where the energy redistribution can be achieved and the discharge performance of the fuel cell can be highly improved. The results show that the highest inhibition efficiency is 73.930% when the aluminum plate is immersed in 6 M potassium hydroxide solution containing 100% zinc oxide. The highest anode efficiency is up to 61.740% when the fuel cell using a mesh-encapsulated anode is discharged at 20 mA/cm2, which is more than 2 times than that of no mesh, and the highest capacity can reach 1839.842 mAh/g, which is 101.623% higher than before optimization. Thus, our studies are very instructive for the large-scale application of aluminum-air fuel cells. |
format |
article |
author |
Manhui Wei Keliang Wang Yayu Zuo Jian Liu Pengfei Zhang Pucheng Pei Siyuan Zhao Yawen Li Junfeng Chen |
author_facet |
Manhui Wei Keliang Wang Yayu Zuo Jian Liu Pengfei Zhang Pucheng Pei Siyuan Zhao Yawen Li Junfeng Chen |
author_sort |
Manhui Wei |
title |
A high-performance Al-air fuel cell using a mesh-encapsulated anode via Al–Zn energy transfer |
title_short |
A high-performance Al-air fuel cell using a mesh-encapsulated anode via Al–Zn energy transfer |
title_full |
A high-performance Al-air fuel cell using a mesh-encapsulated anode via Al–Zn energy transfer |
title_fullStr |
A high-performance Al-air fuel cell using a mesh-encapsulated anode via Al–Zn energy transfer |
title_full_unstemmed |
A high-performance Al-air fuel cell using a mesh-encapsulated anode via Al–Zn energy transfer |
title_sort |
high-performance al-air fuel cell using a mesh-encapsulated anode via al–zn energy transfer |
publisher |
Elsevier |
publishDate |
2021 |
url |
https://doaj.org/article/90620999df72445ba9071fa672c04c82 |
work_keys_str_mv |
AT manhuiwei ahighperformancealairfuelcellusingameshencapsulatedanodeviaalznenergytransfer AT keliangwang ahighperformancealairfuelcellusingameshencapsulatedanodeviaalznenergytransfer AT yayuzuo ahighperformancealairfuelcellusingameshencapsulatedanodeviaalznenergytransfer AT jianliu ahighperformancealairfuelcellusingameshencapsulatedanodeviaalznenergytransfer AT pengfeizhang ahighperformancealairfuelcellusingameshencapsulatedanodeviaalznenergytransfer AT puchengpei ahighperformancealairfuelcellusingameshencapsulatedanodeviaalznenergytransfer AT siyuanzhao ahighperformancealairfuelcellusingameshencapsulatedanodeviaalznenergytransfer AT yawenli ahighperformancealairfuelcellusingameshencapsulatedanodeviaalznenergytransfer AT junfengchen ahighperformancealairfuelcellusingameshencapsulatedanodeviaalznenergytransfer AT manhuiwei highperformancealairfuelcellusingameshencapsulatedanodeviaalznenergytransfer AT keliangwang highperformancealairfuelcellusingameshencapsulatedanodeviaalznenergytransfer AT yayuzuo highperformancealairfuelcellusingameshencapsulatedanodeviaalznenergytransfer AT jianliu highperformancealairfuelcellusingameshencapsulatedanodeviaalznenergytransfer AT pengfeizhang highperformancealairfuelcellusingameshencapsulatedanodeviaalznenergytransfer AT puchengpei highperformancealairfuelcellusingameshencapsulatedanodeviaalznenergytransfer AT siyuanzhao highperformancealairfuelcellusingameshencapsulatedanodeviaalznenergytransfer AT yawenli highperformancealairfuelcellusingameshencapsulatedanodeviaalznenergytransfer AT junfengchen highperformancealairfuelcellusingameshencapsulatedanodeviaalznenergytransfer |
_version_ |
1718419555180609536 |