Structure-Informed Design of an Enzymatically Inactive Vaccine Component for Group A <italic toggle="yes">Streptococcus</italic>

ABSTRACT Streptococcus pyogenes (group A Streptococcus [GAS]) causes ~700 million human infections/year, resulting in >500,000 deaths. There is no commercial GAS vaccine available. The GAS surface protein arginine deiminase (ADI) protects mice against a lethal challenge. ADI is an enzyme that con...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Anna Henningham, Daniel J. Ericsson, Karla Langer, Lachlan W. Casey, Blagojce Jovcevski, G. Singh Chhatwal, J. Andrew Aquilina, Michael R. Batzloff, Bostjan Kobe, Mark J. Walker
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2013
Materias:
Acceso en línea:https://doaj.org/article/90669fba22484c2091bf8b72cdcee539
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:90669fba22484c2091bf8b72cdcee539
record_format dspace
spelling oai:doaj.org-article:90669fba22484c2091bf8b72cdcee5392021-11-15T15:43:09ZStructure-Informed Design of an Enzymatically Inactive Vaccine Component for Group A <italic toggle="yes">Streptococcus</italic>10.1128/mBio.00509-132150-7511https://doaj.org/article/90669fba22484c2091bf8b72cdcee5392013-08-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.00509-13https://doaj.org/toc/2150-7511ABSTRACT Streptococcus pyogenes (group A Streptococcus [GAS]) causes ~700 million human infections/year, resulting in >500,000 deaths. There is no commercial GAS vaccine available. The GAS surface protein arginine deiminase (ADI) protects mice against a lethal challenge. ADI is an enzyme that converts arginine to citrulline and ammonia. Administration of a GAS vaccine preparation containing wild-type ADI, a protein with inherent enzymatic activity, may present a safety risk. In an approach intended to maximize the vaccine safety of GAS ADI, X-ray crystallography and structural immunogenic epitope mapping were used to inform vaccine design. This study aimed to knock out ADI enzyme activity without disrupting the three-dimensional structure or the recognition of immunogenic epitopes. We determined the crystal structure of ADI at 2.5 Å resolution and used it to select a number of amino acid residues for mutagenesis to alanine (D166, E220, H275, D277, and C401). Each mutant protein displayed abrogated activity, and three of the mutant proteins (those with the D166A, H275A, and D277A mutations) possessed a secondary structure and oligomerization state equivalent to those of the wild type, produced high-titer antisera, and avoided disruption of B-cell epitopes of ADI. In addition, antisera raised against the D166A and D277A mutant proteins bound to the GAS cell surface. The inactivated D166A and D277A mutant ADIs are ideal for inclusion in a GAS vaccine preparation. There is no human ortholog of ADI, and we confirm that despite limited structural similarity in the active-site region to human peptidyl ADI 4 (PAD4), ADI does not functionally mimic PAD4 and antiserum raised against GAS ADI does not recognize human PAD4. IMPORTANCE We present an example of structural biology informing human vaccine design. We previously showed that the administration of the enzyme arginine deiminase (ADI) to mice protected the mice against infection with multiple GAS serotypes. In this study, we determined the structure of GAS ADI and used this information to improve the vaccine safety of GAS ADI. Catalytically inactive mutant forms of ADI retained structure, recognition by antisera, and immunogenic epitopes, rendering them ideal for inclusion in GAS vaccine preparations. This example of structural biology informing vaccine design may underpin the formulation of a safe and efficacious GAS vaccine.Anna HenninghamDaniel J. EricssonKarla LangerLachlan W. CaseyBlagojce JovcevskiG. Singh ChhatwalJ. Andrew AquilinaMichael R. BatzloffBostjan KobeMark J. WalkerAmerican Society for MicrobiologyarticleMicrobiologyQR1-502ENmBio, Vol 4, Iss 4 (2013)
institution DOAJ
collection DOAJ
language EN
topic Microbiology
QR1-502
spellingShingle Microbiology
QR1-502
Anna Henningham
Daniel J. Ericsson
Karla Langer
Lachlan W. Casey
Blagojce Jovcevski
G. Singh Chhatwal
J. Andrew Aquilina
Michael R. Batzloff
Bostjan Kobe
Mark J. Walker
Structure-Informed Design of an Enzymatically Inactive Vaccine Component for Group A <italic toggle="yes">Streptococcus</italic>
description ABSTRACT Streptococcus pyogenes (group A Streptococcus [GAS]) causes ~700 million human infections/year, resulting in >500,000 deaths. There is no commercial GAS vaccine available. The GAS surface protein arginine deiminase (ADI) protects mice against a lethal challenge. ADI is an enzyme that converts arginine to citrulline and ammonia. Administration of a GAS vaccine preparation containing wild-type ADI, a protein with inherent enzymatic activity, may present a safety risk. In an approach intended to maximize the vaccine safety of GAS ADI, X-ray crystallography and structural immunogenic epitope mapping were used to inform vaccine design. This study aimed to knock out ADI enzyme activity without disrupting the three-dimensional structure or the recognition of immunogenic epitopes. We determined the crystal structure of ADI at 2.5 Å resolution and used it to select a number of amino acid residues for mutagenesis to alanine (D166, E220, H275, D277, and C401). Each mutant protein displayed abrogated activity, and three of the mutant proteins (those with the D166A, H275A, and D277A mutations) possessed a secondary structure and oligomerization state equivalent to those of the wild type, produced high-titer antisera, and avoided disruption of B-cell epitopes of ADI. In addition, antisera raised against the D166A and D277A mutant proteins bound to the GAS cell surface. The inactivated D166A and D277A mutant ADIs are ideal for inclusion in a GAS vaccine preparation. There is no human ortholog of ADI, and we confirm that despite limited structural similarity in the active-site region to human peptidyl ADI 4 (PAD4), ADI does not functionally mimic PAD4 and antiserum raised against GAS ADI does not recognize human PAD4. IMPORTANCE We present an example of structural biology informing human vaccine design. We previously showed that the administration of the enzyme arginine deiminase (ADI) to mice protected the mice against infection with multiple GAS serotypes. In this study, we determined the structure of GAS ADI and used this information to improve the vaccine safety of GAS ADI. Catalytically inactive mutant forms of ADI retained structure, recognition by antisera, and immunogenic epitopes, rendering them ideal for inclusion in GAS vaccine preparations. This example of structural biology informing vaccine design may underpin the formulation of a safe and efficacious GAS vaccine.
format article
author Anna Henningham
Daniel J. Ericsson
Karla Langer
Lachlan W. Casey
Blagojce Jovcevski
G. Singh Chhatwal
J. Andrew Aquilina
Michael R. Batzloff
Bostjan Kobe
Mark J. Walker
author_facet Anna Henningham
Daniel J. Ericsson
Karla Langer
Lachlan W. Casey
Blagojce Jovcevski
G. Singh Chhatwal
J. Andrew Aquilina
Michael R. Batzloff
Bostjan Kobe
Mark J. Walker
author_sort Anna Henningham
title Structure-Informed Design of an Enzymatically Inactive Vaccine Component for Group A <italic toggle="yes">Streptococcus</italic>
title_short Structure-Informed Design of an Enzymatically Inactive Vaccine Component for Group A <italic toggle="yes">Streptococcus</italic>
title_full Structure-Informed Design of an Enzymatically Inactive Vaccine Component for Group A <italic toggle="yes">Streptococcus</italic>
title_fullStr Structure-Informed Design of an Enzymatically Inactive Vaccine Component for Group A <italic toggle="yes">Streptococcus</italic>
title_full_unstemmed Structure-Informed Design of an Enzymatically Inactive Vaccine Component for Group A <italic toggle="yes">Streptococcus</italic>
title_sort structure-informed design of an enzymatically inactive vaccine component for group a <italic toggle="yes">streptococcus</italic>
publisher American Society for Microbiology
publishDate 2013
url https://doaj.org/article/90669fba22484c2091bf8b72cdcee539
work_keys_str_mv AT annahenningham structureinformeddesignofanenzymaticallyinactivevaccinecomponentforgroupaitalictoggleyesstreptococcusitalic
AT danieljericsson structureinformeddesignofanenzymaticallyinactivevaccinecomponentforgroupaitalictoggleyesstreptococcusitalic
AT karlalanger structureinformeddesignofanenzymaticallyinactivevaccinecomponentforgroupaitalictoggleyesstreptococcusitalic
AT lachlanwcasey structureinformeddesignofanenzymaticallyinactivevaccinecomponentforgroupaitalictoggleyesstreptococcusitalic
AT blagojcejovcevski structureinformeddesignofanenzymaticallyinactivevaccinecomponentforgroupaitalictoggleyesstreptococcusitalic
AT gsinghchhatwal structureinformeddesignofanenzymaticallyinactivevaccinecomponentforgroupaitalictoggleyesstreptococcusitalic
AT jandrewaquilina structureinformeddesignofanenzymaticallyinactivevaccinecomponentforgroupaitalictoggleyesstreptococcusitalic
AT michaelrbatzloff structureinformeddesignofanenzymaticallyinactivevaccinecomponentforgroupaitalictoggleyesstreptococcusitalic
AT bostjankobe structureinformeddesignofanenzymaticallyinactivevaccinecomponentforgroupaitalictoggleyesstreptococcusitalic
AT markjwalker structureinformeddesignofanenzymaticallyinactivevaccinecomponentforgroupaitalictoggleyesstreptococcusitalic
_version_ 1718427598739996672