Resting state networks' corticotopy: the dual intertwined rings architecture.

How does the brain integrate multiple sources of information to support normal sensorimotor and cognitive functions? To investigate this question we present an overall brain architecture (called "the dual intertwined rings architecture") that relates the functional specialization of cortic...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Salma Mesmoudi, Vincent Perlbarg, David Rudrauf, Arnaud Messe, Basile Pinsard, Dominique Hasboun, Claudia Cioli, Guillaume Marrelec, Roberto Toro, Habib Benali, Yves Burnod
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2013
Materias:
R
Q
Acceso en línea:https://doaj.org/article/907c720a557e4424b0718437dc51b00e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:907c720a557e4424b0718437dc51b00e
record_format dspace
spelling oai:doaj.org-article:907c720a557e4424b0718437dc51b00e2021-11-18T09:03:13ZResting state networks' corticotopy: the dual intertwined rings architecture.1932-620310.1371/journal.pone.0067444https://doaj.org/article/907c720a557e4424b0718437dc51b00e2013-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/23894288/?tool=EBIhttps://doaj.org/toc/1932-6203How does the brain integrate multiple sources of information to support normal sensorimotor and cognitive functions? To investigate this question we present an overall brain architecture (called "the dual intertwined rings architecture") that relates the functional specialization of cortical networks to their spatial distribution over the cerebral cortex (or "corticotopy"). Recent results suggest that the resting state networks (RSNs) are organized into two large families: 1) a sensorimotor family that includes visual, somatic, and auditory areas and 2) a large association family that comprises parietal, temporal, and frontal regions and also includes the default mode network. We used two large databases of resting state fMRI data, from which we extracted 32 robust RSNs. We estimated: (1) the RSN functional roles by using a projection of the results on task based networks (TBNs) as referenced in large databases of fMRI activation studies; and (2) relationship of the RSNs with the Brodmann Areas. In both classifications, the 32 RSNs are organized into a remarkable architecture of two intertwined rings per hemisphere and so four rings linked by homotopic connections. The first ring forms a continuous ensemble and includes visual, somatic, and auditory cortices, with interspersed bimodal cortices (auditory-visual, visual-somatic and auditory-somatic, abbreviated as VSA ring). The second ring integrates distant parietal, temporal and frontal regions (PTF ring) through a network of association fiber tracts which closes the ring anatomically and ensures a functional continuity within the ring. The PTF ring relates association cortices specialized in attention, language and working memory, to the networks involved in motivation and biological regulation and rhythms. This "dual intertwined architecture" suggests a dual integrative process: the VSA ring performs fast real-time multimodal integration of sensorimotor information whereas the PTF ring performs multi-temporal integration (i.e., relates past, present, and future representations at different temporal scales).Salma MesmoudiVincent PerlbargDavid RudraufArnaud MesseBasile PinsardDominique HasbounClaudia CioliGuillaume MarrelecRoberto ToroHabib BenaliYves BurnodPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 8, Iss 7, p e67444 (2013)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Salma Mesmoudi
Vincent Perlbarg
David Rudrauf
Arnaud Messe
Basile Pinsard
Dominique Hasboun
Claudia Cioli
Guillaume Marrelec
Roberto Toro
Habib Benali
Yves Burnod
Resting state networks' corticotopy: the dual intertwined rings architecture.
description How does the brain integrate multiple sources of information to support normal sensorimotor and cognitive functions? To investigate this question we present an overall brain architecture (called "the dual intertwined rings architecture") that relates the functional specialization of cortical networks to their spatial distribution over the cerebral cortex (or "corticotopy"). Recent results suggest that the resting state networks (RSNs) are organized into two large families: 1) a sensorimotor family that includes visual, somatic, and auditory areas and 2) a large association family that comprises parietal, temporal, and frontal regions and also includes the default mode network. We used two large databases of resting state fMRI data, from which we extracted 32 robust RSNs. We estimated: (1) the RSN functional roles by using a projection of the results on task based networks (TBNs) as referenced in large databases of fMRI activation studies; and (2) relationship of the RSNs with the Brodmann Areas. In both classifications, the 32 RSNs are organized into a remarkable architecture of two intertwined rings per hemisphere and so four rings linked by homotopic connections. The first ring forms a continuous ensemble and includes visual, somatic, and auditory cortices, with interspersed bimodal cortices (auditory-visual, visual-somatic and auditory-somatic, abbreviated as VSA ring). The second ring integrates distant parietal, temporal and frontal regions (PTF ring) through a network of association fiber tracts which closes the ring anatomically and ensures a functional continuity within the ring. The PTF ring relates association cortices specialized in attention, language and working memory, to the networks involved in motivation and biological regulation and rhythms. This "dual intertwined architecture" suggests a dual integrative process: the VSA ring performs fast real-time multimodal integration of sensorimotor information whereas the PTF ring performs multi-temporal integration (i.e., relates past, present, and future representations at different temporal scales).
format article
author Salma Mesmoudi
Vincent Perlbarg
David Rudrauf
Arnaud Messe
Basile Pinsard
Dominique Hasboun
Claudia Cioli
Guillaume Marrelec
Roberto Toro
Habib Benali
Yves Burnod
author_facet Salma Mesmoudi
Vincent Perlbarg
David Rudrauf
Arnaud Messe
Basile Pinsard
Dominique Hasboun
Claudia Cioli
Guillaume Marrelec
Roberto Toro
Habib Benali
Yves Burnod
author_sort Salma Mesmoudi
title Resting state networks' corticotopy: the dual intertwined rings architecture.
title_short Resting state networks' corticotopy: the dual intertwined rings architecture.
title_full Resting state networks' corticotopy: the dual intertwined rings architecture.
title_fullStr Resting state networks' corticotopy: the dual intertwined rings architecture.
title_full_unstemmed Resting state networks' corticotopy: the dual intertwined rings architecture.
title_sort resting state networks' corticotopy: the dual intertwined rings architecture.
publisher Public Library of Science (PLoS)
publishDate 2013
url https://doaj.org/article/907c720a557e4424b0718437dc51b00e
work_keys_str_mv AT salmamesmoudi restingstatenetworkscorticotopythedualintertwinedringsarchitecture
AT vincentperlbarg restingstatenetworkscorticotopythedualintertwinedringsarchitecture
AT davidrudrauf restingstatenetworkscorticotopythedualintertwinedringsarchitecture
AT arnaudmesse restingstatenetworkscorticotopythedualintertwinedringsarchitecture
AT basilepinsard restingstatenetworkscorticotopythedualintertwinedringsarchitecture
AT dominiquehasboun restingstatenetworkscorticotopythedualintertwinedringsarchitecture
AT claudiacioli restingstatenetworkscorticotopythedualintertwinedringsarchitecture
AT guillaumemarrelec restingstatenetworkscorticotopythedualintertwinedringsarchitecture
AT robertotoro restingstatenetworkscorticotopythedualintertwinedringsarchitecture
AT habibbenali restingstatenetworkscorticotopythedualintertwinedringsarchitecture
AT yvesburnod restingstatenetworkscorticotopythedualintertwinedringsarchitecture
_version_ 1718420977382064128