The Impact of Histological Annotations for Accurate Tissue Classification Using Mass Spectrometry Imaging

Knowing the precise location of analytes in the tissue has the potential to provide information about the organs’ function and predict its behavior. It is especially powerful when used in diagnosis and prognosis prediction of pathologies, such as cancer. Spatial proteomics, in particular mass spectr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Juliana Pereira Lopes Gonçalves, Christine Bollwein, Anna Melissa Schlitter, Benedikt Martin, Bruno Märkl, Kirsten Utpatel, Wilko Weichert, Kristina Schwamborn
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/908038b2ece0454da997ba8e0f977186
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:908038b2ece0454da997ba8e0f977186
record_format dspace
spelling oai:doaj.org-article:908038b2ece0454da997ba8e0f9771862021-11-25T18:20:39ZThe Impact of Histological Annotations for Accurate Tissue Classification Using Mass Spectrometry Imaging10.3390/metabo111107522218-1989https://doaj.org/article/908038b2ece0454da997ba8e0f9771862021-10-01T00:00:00Zhttps://www.mdpi.com/2218-1989/11/11/752https://doaj.org/toc/2218-1989Knowing the precise location of analytes in the tissue has the potential to provide information about the organs’ function and predict its behavior. It is especially powerful when used in diagnosis and prognosis prediction of pathologies, such as cancer. Spatial proteomics, in particular mass spectrometry imaging, together with machine learning approaches, has been proven to be a very helpful tool in answering some histopathology conundrums. To gain accurate information about the tissue, there is a need to build robust classification models. We have investigated the impact of histological annotation on the classification accuracy of different tumor tissues. Intrinsic tissue heterogeneity directly impacts the efficacy of the annotations, having a more pronounced effect on more heterogeneous tissues, as pancreatic ductal adenocarcinoma, where the impact is over 20% in accuracy. On the other hand, in more homogeneous samples, such as kidney tumors, histological annotations have a slenderer impact on the classification accuracy.Juliana Pereira Lopes GonçalvesChristine BollweinAnna Melissa SchlitterBenedikt MartinBruno MärklKirsten UtpatelWilko WeichertKristina SchwambornMDPI AGarticlemass spectrometry imagingproteomicshistological annotationssupervised classificationon-tissue analysisMicrobiologyQR1-502ENMetabolites, Vol 11, Iss 752, p 752 (2021)
institution DOAJ
collection DOAJ
language EN
topic mass spectrometry imaging
proteomics
histological annotations
supervised classification
on-tissue analysis
Microbiology
QR1-502
spellingShingle mass spectrometry imaging
proteomics
histological annotations
supervised classification
on-tissue analysis
Microbiology
QR1-502
Juliana Pereira Lopes Gonçalves
Christine Bollwein
Anna Melissa Schlitter
Benedikt Martin
Bruno Märkl
Kirsten Utpatel
Wilko Weichert
Kristina Schwamborn
The Impact of Histological Annotations for Accurate Tissue Classification Using Mass Spectrometry Imaging
description Knowing the precise location of analytes in the tissue has the potential to provide information about the organs’ function and predict its behavior. It is especially powerful when used in diagnosis and prognosis prediction of pathologies, such as cancer. Spatial proteomics, in particular mass spectrometry imaging, together with machine learning approaches, has been proven to be a very helpful tool in answering some histopathology conundrums. To gain accurate information about the tissue, there is a need to build robust classification models. We have investigated the impact of histological annotation on the classification accuracy of different tumor tissues. Intrinsic tissue heterogeneity directly impacts the efficacy of the annotations, having a more pronounced effect on more heterogeneous tissues, as pancreatic ductal adenocarcinoma, where the impact is over 20% in accuracy. On the other hand, in more homogeneous samples, such as kidney tumors, histological annotations have a slenderer impact on the classification accuracy.
format article
author Juliana Pereira Lopes Gonçalves
Christine Bollwein
Anna Melissa Schlitter
Benedikt Martin
Bruno Märkl
Kirsten Utpatel
Wilko Weichert
Kristina Schwamborn
author_facet Juliana Pereira Lopes Gonçalves
Christine Bollwein
Anna Melissa Schlitter
Benedikt Martin
Bruno Märkl
Kirsten Utpatel
Wilko Weichert
Kristina Schwamborn
author_sort Juliana Pereira Lopes Gonçalves
title The Impact of Histological Annotations for Accurate Tissue Classification Using Mass Spectrometry Imaging
title_short The Impact of Histological Annotations for Accurate Tissue Classification Using Mass Spectrometry Imaging
title_full The Impact of Histological Annotations for Accurate Tissue Classification Using Mass Spectrometry Imaging
title_fullStr The Impact of Histological Annotations for Accurate Tissue Classification Using Mass Spectrometry Imaging
title_full_unstemmed The Impact of Histological Annotations for Accurate Tissue Classification Using Mass Spectrometry Imaging
title_sort impact of histological annotations for accurate tissue classification using mass spectrometry imaging
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/908038b2ece0454da997ba8e0f977186
work_keys_str_mv AT julianapereiralopesgoncalves theimpactofhistologicalannotationsforaccuratetissueclassificationusingmassspectrometryimaging
AT christinebollwein theimpactofhistologicalannotationsforaccuratetissueclassificationusingmassspectrometryimaging
AT annamelissaschlitter theimpactofhistologicalannotationsforaccuratetissueclassificationusingmassspectrometryimaging
AT benediktmartin theimpactofhistologicalannotationsforaccuratetissueclassificationusingmassspectrometryimaging
AT brunomarkl theimpactofhistologicalannotationsforaccuratetissueclassificationusingmassspectrometryimaging
AT kirstenutpatel theimpactofhistologicalannotationsforaccuratetissueclassificationusingmassspectrometryimaging
AT wilkoweichert theimpactofhistologicalannotationsforaccuratetissueclassificationusingmassspectrometryimaging
AT kristinaschwamborn theimpactofhistologicalannotationsforaccuratetissueclassificationusingmassspectrometryimaging
AT julianapereiralopesgoncalves impactofhistologicalannotationsforaccuratetissueclassificationusingmassspectrometryimaging
AT christinebollwein impactofhistologicalannotationsforaccuratetissueclassificationusingmassspectrometryimaging
AT annamelissaschlitter impactofhistologicalannotationsforaccuratetissueclassificationusingmassspectrometryimaging
AT benediktmartin impactofhistologicalannotationsforaccuratetissueclassificationusingmassspectrometryimaging
AT brunomarkl impactofhistologicalannotationsforaccuratetissueclassificationusingmassspectrometryimaging
AT kirstenutpatel impactofhistologicalannotationsforaccuratetissueclassificationusingmassspectrometryimaging
AT wilkoweichert impactofhistologicalannotationsforaccuratetissueclassificationusingmassspectrometryimaging
AT kristinaschwamborn impactofhistologicalannotationsforaccuratetissueclassificationusingmassspectrometryimaging
_version_ 1718411331832381440