Artificial intelligence to improve back pain outcomes and lessons learnt from clinical classification approaches: three systematic reviews
Abstract Artificial intelligence and machine learning (AI/ML) could enhance the ability to detect patterns of clinical characteristics in low-back pain (LBP) and guide treatment. We conducted three systematic reviews to address the following aims: (a) review the status of AI/ML research in LBP, (b)...
Guardado en:
Autores principales: | Scott D. Tagliaferri, Maia Angelova, Xiaohui Zhao, Patrick J. Owen, Clint T. Miller, Tim Wilkin, Daniel L. Belavy |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9092303b7bbc4ef1b1ffb87ef1d96762 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Medical educators’ reflection on how technology sustained medical education in the most critical times and the lessons learnt: Insights from an African medical school
por: Joshua Owolabi, et al.
Publicado: (2021) -
The Effects of Elgucare on Degenerated Intervertebral Disc-Induced Low Back Pain and Disc Regeneration: A Clinical Trial
por: Wen-Cheng Lo, et al.
Publicado: (2021) -
Anticipating and treating dementia: lessons hidden in plain sight
por: Leia Wedlund, et al.
Publicado: (2020) -
Artificial intelligence for the diagnosis of heart failure
por: Dong-Ju Choi, et al.
Publicado: (2020) -
Patient apprehensions about the use of artificial intelligence in healthcare
por: Jordan P. Richardson, et al.
Publicado: (2021)