Feasibility of ex vivo fluorescence imaging of angiogenesis in (non-) culprit human carotid atherosclerotic plaques using bevacizumab-800CW
Abstract Vascular endothelial growth factor-A (VEGF-A) is assumed to play a crucial role in the development and rupture of vulnerable plaques in the atherosclerotic process. We used a VEGF-A targeted fluorescent antibody (bevacizumab-IRDye800CW [bevacizumab-800CW]) to image and visualize the distrib...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/90bcd3fa4abc46a1b524b9280ad22262 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:90bcd3fa4abc46a1b524b9280ad22262 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:90bcd3fa4abc46a1b524b9280ad222622021-12-02T14:06:11ZFeasibility of ex vivo fluorescence imaging of angiogenesis in (non-) culprit human carotid atherosclerotic plaques using bevacizumab-800CW10.1038/s41598-021-82568-82045-2322https://doaj.org/article/90bcd3fa4abc46a1b524b9280ad222622021-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-82568-8https://doaj.org/toc/2045-2322Abstract Vascular endothelial growth factor-A (VEGF-A) is assumed to play a crucial role in the development and rupture of vulnerable plaques in the atherosclerotic process. We used a VEGF-A targeted fluorescent antibody (bevacizumab-IRDye800CW [bevacizumab-800CW]) to image and visualize the distribution of VEGF-A in (non-)culprit carotid plaques ex vivo. Freshly endarterectomized human plaques (n = 15) were incubated in bevacizumab-800CW ex vivo. Subsequent NIRF imaging showed a more intense fluorescent signal in the culprit plaques (n = 11) than in the non-culprit plaques (n = 3). A plaque received from an asymptomatic patient showed pathologic features similar to the culprit plaques. Cross-correlation with VEGF-A immunohistochemistry showed co-localization of VEGF-A over-expression in 91% of the fluorescent culprit plaques, while no VEGF-A expression was found in the non-culprit plaques (p < 0.0001). VEGF-A expression was co-localized with CD34, a marker for angiogenesis (p < 0.001). Ex vivo near-infrared fluorescence (NIRF) imaging by incubation with bevacizumab-800CW shows promise for visualizing VEGF-A overexpression in culprit atherosclerotic plaques in vivo.Lydian A. HuismanPieter J. SteinkampJan-Luuk HillebrandsClark J. ZeebregtsMatthijs D. LinssenAnnelies Jorritsma-SmitRiemer H. J. A. SlartGooitzen M. van DamHendrikus H. BoersmaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Lydian A. Huisman Pieter J. Steinkamp Jan-Luuk Hillebrands Clark J. Zeebregts Matthijs D. Linssen Annelies Jorritsma-Smit Riemer H. J. A. Slart Gooitzen M. van Dam Hendrikus H. Boersma Feasibility of ex vivo fluorescence imaging of angiogenesis in (non-) culprit human carotid atherosclerotic plaques using bevacizumab-800CW |
description |
Abstract Vascular endothelial growth factor-A (VEGF-A) is assumed to play a crucial role in the development and rupture of vulnerable plaques in the atherosclerotic process. We used a VEGF-A targeted fluorescent antibody (bevacizumab-IRDye800CW [bevacizumab-800CW]) to image and visualize the distribution of VEGF-A in (non-)culprit carotid plaques ex vivo. Freshly endarterectomized human plaques (n = 15) were incubated in bevacizumab-800CW ex vivo. Subsequent NIRF imaging showed a more intense fluorescent signal in the culprit plaques (n = 11) than in the non-culprit plaques (n = 3). A plaque received from an asymptomatic patient showed pathologic features similar to the culprit plaques. Cross-correlation with VEGF-A immunohistochemistry showed co-localization of VEGF-A over-expression in 91% of the fluorescent culprit plaques, while no VEGF-A expression was found in the non-culprit plaques (p < 0.0001). VEGF-A expression was co-localized with CD34, a marker for angiogenesis (p < 0.001). Ex vivo near-infrared fluorescence (NIRF) imaging by incubation with bevacizumab-800CW shows promise for visualizing VEGF-A overexpression in culprit atherosclerotic plaques in vivo. |
format |
article |
author |
Lydian A. Huisman Pieter J. Steinkamp Jan-Luuk Hillebrands Clark J. Zeebregts Matthijs D. Linssen Annelies Jorritsma-Smit Riemer H. J. A. Slart Gooitzen M. van Dam Hendrikus H. Boersma |
author_facet |
Lydian A. Huisman Pieter J. Steinkamp Jan-Luuk Hillebrands Clark J. Zeebregts Matthijs D. Linssen Annelies Jorritsma-Smit Riemer H. J. A. Slart Gooitzen M. van Dam Hendrikus H. Boersma |
author_sort |
Lydian A. Huisman |
title |
Feasibility of ex vivo fluorescence imaging of angiogenesis in (non-) culprit human carotid atherosclerotic plaques using bevacizumab-800CW |
title_short |
Feasibility of ex vivo fluorescence imaging of angiogenesis in (non-) culprit human carotid atherosclerotic plaques using bevacizumab-800CW |
title_full |
Feasibility of ex vivo fluorescence imaging of angiogenesis in (non-) culprit human carotid atherosclerotic plaques using bevacizumab-800CW |
title_fullStr |
Feasibility of ex vivo fluorescence imaging of angiogenesis in (non-) culprit human carotid atherosclerotic plaques using bevacizumab-800CW |
title_full_unstemmed |
Feasibility of ex vivo fluorescence imaging of angiogenesis in (non-) culprit human carotid atherosclerotic plaques using bevacizumab-800CW |
title_sort |
feasibility of ex vivo fluorescence imaging of angiogenesis in (non-) culprit human carotid atherosclerotic plaques using bevacizumab-800cw |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/90bcd3fa4abc46a1b524b9280ad22262 |
work_keys_str_mv |
AT lydianahuisman feasibilityofexvivofluorescenceimagingofangiogenesisinnonculprithumancarotidatheroscleroticplaquesusingbevacizumab800cw AT pieterjsteinkamp feasibilityofexvivofluorescenceimagingofangiogenesisinnonculprithumancarotidatheroscleroticplaquesusingbevacizumab800cw AT janluukhillebrands feasibilityofexvivofluorescenceimagingofangiogenesisinnonculprithumancarotidatheroscleroticplaquesusingbevacizumab800cw AT clarkjzeebregts feasibilityofexvivofluorescenceimagingofangiogenesisinnonculprithumancarotidatheroscleroticplaquesusingbevacizumab800cw AT matthijsdlinssen feasibilityofexvivofluorescenceimagingofangiogenesisinnonculprithumancarotidatheroscleroticplaquesusingbevacizumab800cw AT anneliesjorritsmasmit feasibilityofexvivofluorescenceimagingofangiogenesisinnonculprithumancarotidatheroscleroticplaquesusingbevacizumab800cw AT riemerhjaslart feasibilityofexvivofluorescenceimagingofangiogenesisinnonculprithumancarotidatheroscleroticplaquesusingbevacizumab800cw AT gooitzenmvandam feasibilityofexvivofluorescenceimagingofangiogenesisinnonculprithumancarotidatheroscleroticplaquesusingbevacizumab800cw AT hendrikushboersma feasibilityofexvivofluorescenceimagingofangiogenesisinnonculprithumancarotidatheroscleroticplaquesusingbevacizumab800cw |
_version_ |
1718392034743549952 |