Feasibility of ex vivo fluorescence imaging of angiogenesis in (non-) culprit human carotid atherosclerotic plaques using bevacizumab-800CW

Abstract Vascular endothelial growth factor-A (VEGF-A) is assumed to play a crucial role in the development and rupture of vulnerable plaques in the atherosclerotic process. We used a VEGF-A targeted fluorescent antibody (bevacizumab-IRDye800CW [bevacizumab-800CW]) to image and visualize the distrib...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Lydian A. Huisman, Pieter J. Steinkamp, Jan-Luuk Hillebrands, Clark J. Zeebregts, Matthijs D. Linssen, Annelies Jorritsma-Smit, Riemer H. J. A. Slart, Gooitzen M. van Dam, Hendrikus H. Boersma
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/90bcd3fa4abc46a1b524b9280ad22262
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:90bcd3fa4abc46a1b524b9280ad22262
record_format dspace
spelling oai:doaj.org-article:90bcd3fa4abc46a1b524b9280ad222622021-12-02T14:06:11ZFeasibility of ex vivo fluorescence imaging of angiogenesis in (non-) culprit human carotid atherosclerotic plaques using bevacizumab-800CW10.1038/s41598-021-82568-82045-2322https://doaj.org/article/90bcd3fa4abc46a1b524b9280ad222622021-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-82568-8https://doaj.org/toc/2045-2322Abstract Vascular endothelial growth factor-A (VEGF-A) is assumed to play a crucial role in the development and rupture of vulnerable plaques in the atherosclerotic process. We used a VEGF-A targeted fluorescent antibody (bevacizumab-IRDye800CW [bevacizumab-800CW]) to image and visualize the distribution of VEGF-A in (non-)culprit carotid plaques ex vivo. Freshly endarterectomized human plaques (n = 15) were incubated in bevacizumab-800CW ex vivo. Subsequent NIRF imaging showed a more intense fluorescent signal in the culprit plaques (n = 11) than in the non-culprit plaques (n = 3). A plaque received from an asymptomatic patient showed pathologic features similar to the culprit plaques. Cross-correlation with VEGF-A immunohistochemistry showed co-localization of VEGF-A over-expression in 91% of the fluorescent culprit plaques, while no VEGF-A expression was found in the non-culprit plaques (p < 0.0001). VEGF-A expression was co-localized with CD34, a marker for angiogenesis (p < 0.001). Ex vivo near-infrared fluorescence (NIRF) imaging by incubation with bevacizumab-800CW shows promise for visualizing VEGF-A overexpression in culprit atherosclerotic plaques in vivo.Lydian A. HuismanPieter J. SteinkampJan-Luuk HillebrandsClark J. ZeebregtsMatthijs D. LinssenAnnelies Jorritsma-SmitRiemer H. J. A. SlartGooitzen M. van DamHendrikus H. BoersmaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Lydian A. Huisman
Pieter J. Steinkamp
Jan-Luuk Hillebrands
Clark J. Zeebregts
Matthijs D. Linssen
Annelies Jorritsma-Smit
Riemer H. J. A. Slart
Gooitzen M. van Dam
Hendrikus H. Boersma
Feasibility of ex vivo fluorescence imaging of angiogenesis in (non-) culprit human carotid atherosclerotic plaques using bevacizumab-800CW
description Abstract Vascular endothelial growth factor-A (VEGF-A) is assumed to play a crucial role in the development and rupture of vulnerable plaques in the atherosclerotic process. We used a VEGF-A targeted fluorescent antibody (bevacizumab-IRDye800CW [bevacizumab-800CW]) to image and visualize the distribution of VEGF-A in (non-)culprit carotid plaques ex vivo. Freshly endarterectomized human plaques (n = 15) were incubated in bevacizumab-800CW ex vivo. Subsequent NIRF imaging showed a more intense fluorescent signal in the culprit plaques (n = 11) than in the non-culprit plaques (n = 3). A plaque received from an asymptomatic patient showed pathologic features similar to the culprit plaques. Cross-correlation with VEGF-A immunohistochemistry showed co-localization of VEGF-A over-expression in 91% of the fluorescent culprit plaques, while no VEGF-A expression was found in the non-culprit plaques (p < 0.0001). VEGF-A expression was co-localized with CD34, a marker for angiogenesis (p < 0.001). Ex vivo near-infrared fluorescence (NIRF) imaging by incubation with bevacizumab-800CW shows promise for visualizing VEGF-A overexpression in culprit atherosclerotic plaques in vivo.
format article
author Lydian A. Huisman
Pieter J. Steinkamp
Jan-Luuk Hillebrands
Clark J. Zeebregts
Matthijs D. Linssen
Annelies Jorritsma-Smit
Riemer H. J. A. Slart
Gooitzen M. van Dam
Hendrikus H. Boersma
author_facet Lydian A. Huisman
Pieter J. Steinkamp
Jan-Luuk Hillebrands
Clark J. Zeebregts
Matthijs D. Linssen
Annelies Jorritsma-Smit
Riemer H. J. A. Slart
Gooitzen M. van Dam
Hendrikus H. Boersma
author_sort Lydian A. Huisman
title Feasibility of ex vivo fluorescence imaging of angiogenesis in (non-) culprit human carotid atherosclerotic plaques using bevacizumab-800CW
title_short Feasibility of ex vivo fluorescence imaging of angiogenesis in (non-) culprit human carotid atherosclerotic plaques using bevacizumab-800CW
title_full Feasibility of ex vivo fluorescence imaging of angiogenesis in (non-) culprit human carotid atherosclerotic plaques using bevacizumab-800CW
title_fullStr Feasibility of ex vivo fluorescence imaging of angiogenesis in (non-) culprit human carotid atherosclerotic plaques using bevacizumab-800CW
title_full_unstemmed Feasibility of ex vivo fluorescence imaging of angiogenesis in (non-) culprit human carotid atherosclerotic plaques using bevacizumab-800CW
title_sort feasibility of ex vivo fluorescence imaging of angiogenesis in (non-) culprit human carotid atherosclerotic plaques using bevacizumab-800cw
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/90bcd3fa4abc46a1b524b9280ad22262
work_keys_str_mv AT lydianahuisman feasibilityofexvivofluorescenceimagingofangiogenesisinnonculprithumancarotidatheroscleroticplaquesusingbevacizumab800cw
AT pieterjsteinkamp feasibilityofexvivofluorescenceimagingofangiogenesisinnonculprithumancarotidatheroscleroticplaquesusingbevacizumab800cw
AT janluukhillebrands feasibilityofexvivofluorescenceimagingofangiogenesisinnonculprithumancarotidatheroscleroticplaquesusingbevacizumab800cw
AT clarkjzeebregts feasibilityofexvivofluorescenceimagingofangiogenesisinnonculprithumancarotidatheroscleroticplaquesusingbevacizumab800cw
AT matthijsdlinssen feasibilityofexvivofluorescenceimagingofangiogenesisinnonculprithumancarotidatheroscleroticplaquesusingbevacizumab800cw
AT anneliesjorritsmasmit feasibilityofexvivofluorescenceimagingofangiogenesisinnonculprithumancarotidatheroscleroticplaquesusingbevacizumab800cw
AT riemerhjaslart feasibilityofexvivofluorescenceimagingofangiogenesisinnonculprithumancarotidatheroscleroticplaquesusingbevacizumab800cw
AT gooitzenmvandam feasibilityofexvivofluorescenceimagingofangiogenesisinnonculprithumancarotidatheroscleroticplaquesusingbevacizumab800cw
AT hendrikushboersma feasibilityofexvivofluorescenceimagingofangiogenesisinnonculprithumancarotidatheroscleroticplaquesusingbevacizumab800cw
_version_ 1718392034743549952