Multiple Slip Impact on the Darcy–Forchheimer Hybrid Nano Fluid Flow Due to Quadratic Convection Past an Inclined Plane
Nowadays, the problem of solar thermal absorption plays a vital role in energy storage in power plants, but within this phenomenon solar systems have a big challenge in storing and regulating energies at extreme temperatures. The solar energy absorber based on hybrid nanofluids tends to store therma...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/90e13d51684344a8bf2190e9856f4faf |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:90e13d51684344a8bf2190e9856f4faf |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:90e13d51684344a8bf2190e9856f4faf2021-11-25T18:17:19ZMultiple Slip Impact on the Darcy–Forchheimer Hybrid Nano Fluid Flow Due to Quadratic Convection Past an Inclined Plane10.3390/math92229342227-7390https://doaj.org/article/90e13d51684344a8bf2190e9856f4faf2021-11-01T00:00:00Zhttps://www.mdpi.com/2227-7390/9/22/2934https://doaj.org/toc/2227-7390Nowadays, the problem of solar thermal absorption plays a vital role in energy storage in power plants, but within this phenomenon solar systems have a big challenge in storing and regulating energies at extreme temperatures. The solar energy absorber based on hybrid nanofluids tends to store thermal energy, and the hybrid nanofluids involve the stable scattering of different nano dimension particles in the conventional solvent at a suitable proportion to gain the desired thermophysical constraints. The authors focus on the behavior of the inclined plate absorber panel as the basic solution of water is replaced by a hybrid nanofluid, including <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><mi>u</mi></mrow></semantics></math></inline-formula> (Copper) and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><msub><mi>l</mi><mn>2</mn></msub><msub><mi>O</mi><mn>3</mn></msub></mrow></semantics></math></inline-formula> (Aluminum Oxide), and water is utilized as a base surfactant in the current investigation. The inclined panel is integrated into a porous surface with the presence of solar radiations, Joule heating, and heat absorption. The fundamental equations of the flow and energy model are addressed with the similarity transformations. The homotopy analysis method (HAM) via Mathematica software is used to explore the solution to this problem. Furthermore, the important physical characteristics of the rate of heat transfer, omission and absorption of solar radiation, and its impact on the solar plant are observed.Fouad Othman MallawiMalik Zaka UllahMDPI AGarticleinclined plateDarcy–Forchheimer flownanomaterials (<i>Cu</i>, <i>Al</i><sub>2</sub><i>O</i><sub>3</sub>)heat sourceHAMMathematicsQA1-939ENMathematics, Vol 9, Iss 2934, p 2934 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
inclined plate Darcy–Forchheimer flow nanomaterials (<i>Cu</i>, <i>Al</i><sub>2</sub><i>O</i><sub>3</sub>) heat source HAM Mathematics QA1-939 |
spellingShingle |
inclined plate Darcy–Forchheimer flow nanomaterials (<i>Cu</i>, <i>Al</i><sub>2</sub><i>O</i><sub>3</sub>) heat source HAM Mathematics QA1-939 Fouad Othman Mallawi Malik Zaka Ullah Multiple Slip Impact on the Darcy–Forchheimer Hybrid Nano Fluid Flow Due to Quadratic Convection Past an Inclined Plane |
description |
Nowadays, the problem of solar thermal absorption plays a vital role in energy storage in power plants, but within this phenomenon solar systems have a big challenge in storing and regulating energies at extreme temperatures. The solar energy absorber based on hybrid nanofluids tends to store thermal energy, and the hybrid nanofluids involve the stable scattering of different nano dimension particles in the conventional solvent at a suitable proportion to gain the desired thermophysical constraints. The authors focus on the behavior of the inclined plate absorber panel as the basic solution of water is replaced by a hybrid nanofluid, including <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><mi>u</mi></mrow></semantics></math></inline-formula> (Copper) and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><msub><mi>l</mi><mn>2</mn></msub><msub><mi>O</mi><mn>3</mn></msub></mrow></semantics></math></inline-formula> (Aluminum Oxide), and water is utilized as a base surfactant in the current investigation. The inclined panel is integrated into a porous surface with the presence of solar radiations, Joule heating, and heat absorption. The fundamental equations of the flow and energy model are addressed with the similarity transformations. The homotopy analysis method (HAM) via Mathematica software is used to explore the solution to this problem. Furthermore, the important physical characteristics of the rate of heat transfer, omission and absorption of solar radiation, and its impact on the solar plant are observed. |
format |
article |
author |
Fouad Othman Mallawi Malik Zaka Ullah |
author_facet |
Fouad Othman Mallawi Malik Zaka Ullah |
author_sort |
Fouad Othman Mallawi |
title |
Multiple Slip Impact on the Darcy–Forchheimer Hybrid Nano Fluid Flow Due to Quadratic Convection Past an Inclined Plane |
title_short |
Multiple Slip Impact on the Darcy–Forchheimer Hybrid Nano Fluid Flow Due to Quadratic Convection Past an Inclined Plane |
title_full |
Multiple Slip Impact on the Darcy–Forchheimer Hybrid Nano Fluid Flow Due to Quadratic Convection Past an Inclined Plane |
title_fullStr |
Multiple Slip Impact on the Darcy–Forchheimer Hybrid Nano Fluid Flow Due to Quadratic Convection Past an Inclined Plane |
title_full_unstemmed |
Multiple Slip Impact on the Darcy–Forchheimer Hybrid Nano Fluid Flow Due to Quadratic Convection Past an Inclined Plane |
title_sort |
multiple slip impact on the darcy–forchheimer hybrid nano fluid flow due to quadratic convection past an inclined plane |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/90e13d51684344a8bf2190e9856f4faf |
work_keys_str_mv |
AT fouadothmanmallawi multipleslipimpactonthedarcyforchheimerhybridnanofluidflowduetoquadraticconvectionpastaninclinedplane AT malikzakaullah multipleslipimpactonthedarcyforchheimerhybridnanofluidflowduetoquadraticconvectionpastaninclinedplane |
_version_ |
1718411395365601280 |