Human behaviour recognition with mid‐level representations for crowd understanding and analysis
Abstract Crowd understanding and analysis have received increasing attention for couples of decades, and development of human behaviour recognition strongly supports the application of crowd understanding and analysis. Human behaviour recognition usually seeks to automatically analyse ongoing moveme...
Guardado en:
Autores principales: | Bangyong Sun, Nianzeng Yuan, Shuying Li, Siyuan Wu, Nan Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/90e51ef616c14f9a8510351812599a83 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Crowd understanding and analysis
por: Qi Wang, et al.
Publicado: (2021) -
MFP‐Net: Multi‐scale feature pyramid network for crowd counting
por: Tao Lei, et al.
Publicado: (2021) -
Behaviour detection in crowded classroom scenes via enhancing features robust to scale and perspective variations
por: Mingyu Liu, et al.
Publicado: (2021) -
Crowd activity recognition in live video streaming via 3D‐ResNet and region graph convolution network
por: Junpeng Kang, et al.
Publicado: (2021) -
Multi‐view intrinsic low‐rank representation for robust face recognition and clustering
por: Zhi‐yang Wang, et al.
Publicado: (2021)