Multiscale analysis of the hydrate based carbon capture from gas mixtures containing carbon dioxide
Abstract To reveal the kinetic performance of gas molecules in hydrate growth, hydrate formation from pure CO2, flue gas, and biogas was measured using in-situ Raman and macroscopic methods at 271.6 K. In the in-situ Raman measurements, Raman peaks of gases in the hydrate phase were characterised an...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/90e78b1e9b36499c906373accabbb1af |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:90e78b1e9b36499c906373accabbb1af |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:90e78b1e9b36499c906373accabbb1af2021-12-02T13:41:34ZMultiscale analysis of the hydrate based carbon capture from gas mixtures containing carbon dioxide10.1038/s41598-021-88531-x2045-2322https://doaj.org/article/90e78b1e9b36499c906373accabbb1af2021-04-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-88531-xhttps://doaj.org/toc/2045-2322Abstract To reveal the kinetic performance of gas molecules in hydrate growth, hydrate formation from pure CO2, flue gas, and biogas was measured using in-situ Raman and macroscopic methods at 271.6 K. In the in-situ Raman measurements, Raman peaks of gases in the hydrate phase were characterised and normalised by taking the water bands from 2800 to 3800 cm−1 as a reference, whose line shapes were not found to have a noticeable change in the conversion from Ih ice to sI hydrate. The hydrate growth was suggested to start with the formation of unsaturated hydrate nuclei followed by gas adsorption. In hydrate formed from all tested gases, CO2 concentrations in hydrate nuclei were found to be 23–33% of the saturation state. In the flue gas system, the N2 concentration reached a saturation state once hydrate nuclei formed. In the biogas system, competitive adsorption of CH4 and CO2 molecules was observed, while N2 molecules hardly evolved in hydrate formation. Combined with micro- and macroscopic analysis, small molecules such as N2 and CO2 were suggested to be more active in the formation of hydrate nuclei, and the preferential adsorption of CO2 molecules took place in the subsequent gas adsorption process.Xuebing ZhouXiaoya ZangZhen LongDeqing LiangNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-9 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Xuebing Zhou Xiaoya Zang Zhen Long Deqing Liang Multiscale analysis of the hydrate based carbon capture from gas mixtures containing carbon dioxide |
description |
Abstract To reveal the kinetic performance of gas molecules in hydrate growth, hydrate formation from pure CO2, flue gas, and biogas was measured using in-situ Raman and macroscopic methods at 271.6 K. In the in-situ Raman measurements, Raman peaks of gases in the hydrate phase were characterised and normalised by taking the water bands from 2800 to 3800 cm−1 as a reference, whose line shapes were not found to have a noticeable change in the conversion from Ih ice to sI hydrate. The hydrate growth was suggested to start with the formation of unsaturated hydrate nuclei followed by gas adsorption. In hydrate formed from all tested gases, CO2 concentrations in hydrate nuclei were found to be 23–33% of the saturation state. In the flue gas system, the N2 concentration reached a saturation state once hydrate nuclei formed. In the biogas system, competitive adsorption of CH4 and CO2 molecules was observed, while N2 molecules hardly evolved in hydrate formation. Combined with micro- and macroscopic analysis, small molecules such as N2 and CO2 were suggested to be more active in the formation of hydrate nuclei, and the preferential adsorption of CO2 molecules took place in the subsequent gas adsorption process. |
format |
article |
author |
Xuebing Zhou Xiaoya Zang Zhen Long Deqing Liang |
author_facet |
Xuebing Zhou Xiaoya Zang Zhen Long Deqing Liang |
author_sort |
Xuebing Zhou |
title |
Multiscale analysis of the hydrate based carbon capture from gas mixtures containing carbon dioxide |
title_short |
Multiscale analysis of the hydrate based carbon capture from gas mixtures containing carbon dioxide |
title_full |
Multiscale analysis of the hydrate based carbon capture from gas mixtures containing carbon dioxide |
title_fullStr |
Multiscale analysis of the hydrate based carbon capture from gas mixtures containing carbon dioxide |
title_full_unstemmed |
Multiscale analysis of the hydrate based carbon capture from gas mixtures containing carbon dioxide |
title_sort |
multiscale analysis of the hydrate based carbon capture from gas mixtures containing carbon dioxide |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/90e78b1e9b36499c906373accabbb1af |
work_keys_str_mv |
AT xuebingzhou multiscaleanalysisofthehydratebasedcarboncapturefromgasmixturescontainingcarbondioxide AT xiaoyazang multiscaleanalysisofthehydratebasedcarboncapturefromgasmixturescontainingcarbondioxide AT zhenlong multiscaleanalysisofthehydratebasedcarboncapturefromgasmixturescontainingcarbondioxide AT deqingliang multiscaleanalysisofthehydratebasedcarboncapturefromgasmixturescontainingcarbondioxide |
_version_ |
1718392568254824448 |