Cerebello-thalamo-cortical hyperconnectivity as a state-independent functional neural signature for psychosis prediction and characterization

Brain function alterations in schizophrenia and other psychotic disorders remain poorly understood. Here, the authors discover that increased neural connectivity in the cerebello-thalamo-cortical circuitry predicts psychosis in those at high risk, and is present in people with schizophrenia.

Saved in:
Bibliographic Details
Main Authors: Hengyi Cao, Oliver Y. Chén, Yoonho Chung, Jennifer K. Forsyth, Sarah C. McEwen, Dylan G. Gee, Carrie E. Bearden, Jean Addington, Bradley Goodyear, Kristin S. Cadenhead, Heline Mirzakhanian, Barbara A. Cornblatt, Ricardo E. Carrión, Daniel H. Mathalon, Thomas H. McGlashan, Diana O. Perkins, Aysenil Belger, Larry J. Seidman, Heidi Thermenos, Ming T. Tsuang, Theo G. M. van Erp, Elaine F. Walker, Stephan Hamann, Alan Anticevic, Scott W. Woods, Tyrone D. Cannon
Format: article
Language:EN
Published: Nature Portfolio 2018
Subjects:
Q
Online Access:https://doaj.org/article/90e889c2e50f47319e444c8a9c82d126
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Brain function alterations in schizophrenia and other psychotic disorders remain poorly understood. Here, the authors discover that increased neural connectivity in the cerebello-thalamo-cortical circuitry predicts psychosis in those at high risk, and is present in people with schizophrenia.