Crash severity analysis of vulnerable road users using machine learning.
Road crash fatality is a universal problem of the transportation system. A massive death toll caused annually due to road crash incidents, and among them, vulnerable road users (VRU) are endangered with high crash severity. This paper focuses on employing machine learning-based classification approa...
Enregistré dans:
Auteurs principaux: | Md Mostafizur Rahman Komol, Md Mahmudul Hasan, Mohammed Elhenawy, Shamsunnahar Yasmin, Mahmoud Masoud, Andry Rakotonirainy |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/90ed1fcca3d44135a108770cb903001d |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
The effectiveness of the AEB system in the context of the safety of vulnerable road users
par: Ucińska Monika, et autres
Publié: (2021) -
Education for Road Safety: What is the State of Affairs in Three Groups of Vulnerable Road Users in Spain?
par: Francisco Alonso, et autres
Publié: (2021) -
Crash Injury Severity Prediction Using an Ordinal Classification Machine Learning Approach
par: Shengxue Zhu, et autres
Publié: (2021) -
Comparison of physical and psychological health outcomes for motorcyclists and other road users after land transport crashes: an inception cohort study
par: Lisa N. Sharwood, et autres
Publié: (2021) -
Crash and disengagement data of autonomous vehicles on public roads in California
par: Amolika Sinha, et autres
Publié: (2021)