Power moments of automorphic L-functions related to Maass forms for SL3(ℤ)

Let ff be a self-dual Hecke-Maass eigenform for the group SL3(Z)S{L}_{3}\left({\mathbb{Z}}). For 12<σ<1\frac{1}{2}\lt \sigma \lt 1 fixed we define m(σ)m\left(\sigma ) (≥2\ge 2) as the supremum of all numbers mm such that ∫1T∣L(s,f)∣mdt≪f,εT1+ε,\underset{1}{\overset{T}{\int }}| L\left(s,f){| }^...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Huang Jing, Liu Huafeng, Zhang Deyu
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/90fa483de27e426b9ec3a54470494d80
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:90fa483de27e426b9ec3a54470494d80
record_format dspace
spelling oai:doaj.org-article:90fa483de27e426b9ec3a54470494d802021-12-05T14:10:53ZPower moments of automorphic L-functions related to Maass forms for SL3(ℤ)2391-545510.1515/math-2021-0076https://doaj.org/article/90fa483de27e426b9ec3a54470494d802021-08-01T00:00:00Zhttps://doi.org/10.1515/math-2021-0076https://doaj.org/toc/2391-5455Let ff be a self-dual Hecke-Maass eigenform for the group SL3(Z)S{L}_{3}\left({\mathbb{Z}}). For 12<σ<1\frac{1}{2}\lt \sigma \lt 1 fixed we define m(σ)m\left(\sigma ) (≥2\ge 2) as the supremum of all numbers mm such that ∫1T∣L(s,f)∣mdt≪f,εT1+ε,\underset{1}{\overset{T}{\int }}| L\left(s,f){| }^{m}{\rm{d}}t{\ll }_{f,\varepsilon }{T}^{1+\varepsilon }, where L(s,f)L\left(s,f) is the Godement-Jacquet L-function related to ff. In this paper, we first show the lower bound of m(σ)m\left(\sigma ) for 23<σ<1\frac{2}{3}\lt \sigma \lt 1. Then we establish asymptotic formulas for the second, fourth and sixth powers of L(s,f)L\left(s,f) as applications.Huang JingLiu HuafengZhang DeyuDe Gruyterarticlepower momentsl-functionautomorphic form11f0311f66MathematicsQA1-939ENOpen Mathematics, Vol 19, Iss 1, Pp 1007-1017 (2021)
institution DOAJ
collection DOAJ
language EN
topic power moments
l-function
automorphic form
11f03
11f66
Mathematics
QA1-939
spellingShingle power moments
l-function
automorphic form
11f03
11f66
Mathematics
QA1-939
Huang Jing
Liu Huafeng
Zhang Deyu
Power moments of automorphic L-functions related to Maass forms for SL3(ℤ)
description Let ff be a self-dual Hecke-Maass eigenform for the group SL3(Z)S{L}_{3}\left({\mathbb{Z}}). For 12<σ<1\frac{1}{2}\lt \sigma \lt 1 fixed we define m(σ)m\left(\sigma ) (≥2\ge 2) as the supremum of all numbers mm such that ∫1T∣L(s,f)∣mdt≪f,εT1+ε,\underset{1}{\overset{T}{\int }}| L\left(s,f){| }^{m}{\rm{d}}t{\ll }_{f,\varepsilon }{T}^{1+\varepsilon }, where L(s,f)L\left(s,f) is the Godement-Jacquet L-function related to ff. In this paper, we first show the lower bound of m(σ)m\left(\sigma ) for 23<σ<1\frac{2}{3}\lt \sigma \lt 1. Then we establish asymptotic formulas for the second, fourth and sixth powers of L(s,f)L\left(s,f) as applications.
format article
author Huang Jing
Liu Huafeng
Zhang Deyu
author_facet Huang Jing
Liu Huafeng
Zhang Deyu
author_sort Huang Jing
title Power moments of automorphic L-functions related to Maass forms for SL3(ℤ)
title_short Power moments of automorphic L-functions related to Maass forms for SL3(ℤ)
title_full Power moments of automorphic L-functions related to Maass forms for SL3(ℤ)
title_fullStr Power moments of automorphic L-functions related to Maass forms for SL3(ℤ)
title_full_unstemmed Power moments of automorphic L-functions related to Maass forms for SL3(ℤ)
title_sort power moments of automorphic l-functions related to maass forms for sl3(ℤ)
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/90fa483de27e426b9ec3a54470494d80
work_keys_str_mv AT huangjing powermomentsofautomorphiclfunctionsrelatedtomaassformsforsl3z
AT liuhuafeng powermomentsofautomorphiclfunctionsrelatedtomaassformsforsl3z
AT zhangdeyu powermomentsofautomorphiclfunctionsrelatedtomaassformsforsl3z
_version_ 1718371616256163840