Actin Bundle Nanomechanics and Organization Are Modulated by Macromolecular Crowding and Electrostatic Interactions
The structural and mechanical properties of actin bundles are essential to eukaryotic cells, aiding in cell motility and mechanical support of the plasma membrane. Bundle formation occurs in crowded intracellular environments composed of various ions and macromolecules. Although the roles of cations...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/90fdb85f12794815a92546f24b528c4d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:90fdb85f12794815a92546f24b528c4d |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:90fdb85f12794815a92546f24b528c4d2021-12-01T07:56:39ZActin Bundle Nanomechanics and Organization Are Modulated by Macromolecular Crowding and Electrostatic Interactions2296-889X10.3389/fmolb.2021.760950https://doaj.org/article/90fdb85f12794815a92546f24b528c4d2021-11-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fmolb.2021.760950/fullhttps://doaj.org/toc/2296-889XThe structural and mechanical properties of actin bundles are essential to eukaryotic cells, aiding in cell motility and mechanical support of the plasma membrane. Bundle formation occurs in crowded intracellular environments composed of various ions and macromolecules. Although the roles of cations and macromolecular crowding in the mechanics and organization of actin bundles have been independently established, how changing both intracellular environmental conditions influence bundle mechanics at the nanoscale has yet to be established. Here we investigate how electrostatics and depletion interactions modulate the relative Young’s modulus and height of actin bundles using atomic force microscopy. Our results demonstrate that cation- and depletion-induced bundles display an overall reduction of relative Young’s modulus depending on either cation or crowding concentrations. Furthermore, we directly measure changes to cation- and depletion-induced bundle height, indicating that bundles experience alterations to filament packing supporting the reduction to relative Young’s modulus. Taken together, our work suggests that electrostatic and depletion interactions may act counteractively, impacting actin bundle nanomechanics and organization.Nicholas CastanedaNicholas CastanedaCecile FeuillieMichael MolinariEllen Hyeran KangEllen Hyeran KangEllen Hyeran KangFrontiers Media S.A.articleactin bundlesmacromolecular crowdingcationsnanomechanicsatomic force microscopyBiology (General)QH301-705.5ENFrontiers in Molecular Biosciences, Vol 8 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
actin bundles macromolecular crowding cations nanomechanics atomic force microscopy Biology (General) QH301-705.5 |
spellingShingle |
actin bundles macromolecular crowding cations nanomechanics atomic force microscopy Biology (General) QH301-705.5 Nicholas Castaneda Nicholas Castaneda Cecile Feuillie Michael Molinari Ellen Hyeran Kang Ellen Hyeran Kang Ellen Hyeran Kang Actin Bundle Nanomechanics and Organization Are Modulated by Macromolecular Crowding and Electrostatic Interactions |
description |
The structural and mechanical properties of actin bundles are essential to eukaryotic cells, aiding in cell motility and mechanical support of the plasma membrane. Bundle formation occurs in crowded intracellular environments composed of various ions and macromolecules. Although the roles of cations and macromolecular crowding in the mechanics and organization of actin bundles have been independently established, how changing both intracellular environmental conditions influence bundle mechanics at the nanoscale has yet to be established. Here we investigate how electrostatics and depletion interactions modulate the relative Young’s modulus and height of actin bundles using atomic force microscopy. Our results demonstrate that cation- and depletion-induced bundles display an overall reduction of relative Young’s modulus depending on either cation or crowding concentrations. Furthermore, we directly measure changes to cation- and depletion-induced bundle height, indicating that bundles experience alterations to filament packing supporting the reduction to relative Young’s modulus. Taken together, our work suggests that electrostatic and depletion interactions may act counteractively, impacting actin bundle nanomechanics and organization. |
format |
article |
author |
Nicholas Castaneda Nicholas Castaneda Cecile Feuillie Michael Molinari Ellen Hyeran Kang Ellen Hyeran Kang Ellen Hyeran Kang |
author_facet |
Nicholas Castaneda Nicholas Castaneda Cecile Feuillie Michael Molinari Ellen Hyeran Kang Ellen Hyeran Kang Ellen Hyeran Kang |
author_sort |
Nicholas Castaneda |
title |
Actin Bundle Nanomechanics and Organization Are Modulated by Macromolecular Crowding and Electrostatic Interactions |
title_short |
Actin Bundle Nanomechanics and Organization Are Modulated by Macromolecular Crowding and Electrostatic Interactions |
title_full |
Actin Bundle Nanomechanics and Organization Are Modulated by Macromolecular Crowding and Electrostatic Interactions |
title_fullStr |
Actin Bundle Nanomechanics and Organization Are Modulated by Macromolecular Crowding and Electrostatic Interactions |
title_full_unstemmed |
Actin Bundle Nanomechanics and Organization Are Modulated by Macromolecular Crowding and Electrostatic Interactions |
title_sort |
actin bundle nanomechanics and organization are modulated by macromolecular crowding and electrostatic interactions |
publisher |
Frontiers Media S.A. |
publishDate |
2021 |
url |
https://doaj.org/article/90fdb85f12794815a92546f24b528c4d |
work_keys_str_mv |
AT nicholascastaneda actinbundlenanomechanicsandorganizationaremodulatedbymacromolecularcrowdingandelectrostaticinteractions AT nicholascastaneda actinbundlenanomechanicsandorganizationaremodulatedbymacromolecularcrowdingandelectrostaticinteractions AT cecilefeuillie actinbundlenanomechanicsandorganizationaremodulatedbymacromolecularcrowdingandelectrostaticinteractions AT michaelmolinari actinbundlenanomechanicsandorganizationaremodulatedbymacromolecularcrowdingandelectrostaticinteractions AT ellenhyerankang actinbundlenanomechanicsandorganizationaremodulatedbymacromolecularcrowdingandelectrostaticinteractions AT ellenhyerankang actinbundlenanomechanicsandorganizationaremodulatedbymacromolecularcrowdingandelectrostaticinteractions AT ellenhyerankang actinbundlenanomechanicsandorganizationaremodulatedbymacromolecularcrowdingandelectrostaticinteractions |
_version_ |
1718405426294292480 |