Neural networks for computing and denoising the continuous nonlinear Fourier spectrum in focusing nonlinear Schrödinger equation
Abstract We combine the nonlinear Fourier transform (NFT) signal processing with machine learning methods for solving the direct spectral problem associated with the nonlinear Schrödinger equation. The latter is one of the core nonlinear science models emerging in a range of applications. Our focus...
Guardado en:
Autores principales: | Egor V. Sedov, Pedro J. Freire, Vladimir V. Seredin, Vladyslav A. Kolbasin, Morteza Kamalian-Kopae, Igor S. Chekhovskoy, Sergei K. Turitsyn, Jaroslaw E. Prilepsky |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/90fe5d2116484d4981a9d40767e509f4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Analysis of laser radiation using the Nonlinear Fourier transform
por: Srikanth Sugavanam, et al.
Publicado: (2019) -
Author Correction: Analysis of laser radiation using the Nonlinear Fourier transform
por: Srikanth Sugavanam, et al.
Publicado: (2020) -
Capacity estimates for optical transmission based on the nonlinear Fourier transform
por: Stanislav A. Derevyanko, et al.
Publicado: (2016) -
Instability in nonlinear Schrödinger breathers
por: Muñoz,Claudio
Publicado: (2017) -
Theory of quantum path computing with Fourier optics and future applications for quantum supremacy, neural networks and nonlinear Schrödinger equations
por: Burhan Gulbahar
Publicado: (2020)