Winsorization for Robust Bayesian Neural Networks
With the advent of big data and the popularity of black-box deep learning methods, it is imperative to address the robustness of neural networks to noise and outliers. We propose the use of Winsorization to recover model performances when the data may have outliers and other aberrant observations. W...
Guardado en:
Autores principales: | Somya Sharma, Snigdhansu Chatterjee |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/911e03cac136460fa0bfa8c32c4cbcc3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Sampling the Variational Posterior with Local Refinement
por: Marton Havasi, et al.
Publicado: (2021) -
Unveiling quasiparticle dynamics of topological insulators through Bayesian modelling
por: Satoru Tokuda, et al.
Publicado: (2021) -
Optimal, near-optimal, and robust epidemic control
por: Dylan H. Morris, et al.
Publicado: (2021) -
A Scalable Bayesian Sampling Method Based on Stochastic Gradient Descent Isotropization
por: Giulio Franzese, et al.
Publicado: (2021) -
Conditional Deep Gaussian Processes: Empirical Bayes Hyperdata Learning
por: Chi-Ken Lu, et al.
Publicado: (2021)