Neural Network Modeling of Cutting Force and Chip Thickness Ratio for Turning Aluminum Alloy 7075-T6
The turning process has various factors, which affecting machinability and should be investigated. These are surface roughness, tool life, power consumption, cutting temperature, machining force components, tool wear, and chip thickness ratio. These factors made the process nonlinear and complicate...
Guardado en:
Autor principal: | Mohanned Mohammed H. AL-Khafaji |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Al-Khwarizmi College of Engineering – University of Baghdad
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/91213c09529946299790c9607ac46af3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Prediction of Cutting Force in Turning Process by Using Artificial Neural Network
por: Marwa Qasim Ibraheem
Publicado: (2020) -
Analysis of the Effects of Aggressive Shot Peening on Fatigue Life of 7075 T6 Aluminum Alloy
por: Khairallah S. Jabur
Publicado: (2012) -
Analysis of the Effects of Aggressive Shot Peening on Fatigue Life of 7075 – T6 Aluminum Alloy
por: Khairallah S. Jabur
Publicado: (2012) -
Optimization of Friction Stir Welding Process Parameters of Dissimilar AA2024-T3 and AA7075-T73 Aluminum Alloys by Using Taguchi Method
por: Muna K. Abbass, et al.
Publicado: (2017) -
Optimization Drilling Parameters of Aluminum Alloy Based on Taguchi Method
por: Aseel Jameel Haleel
Publicado: (2019)