Control of neural systems at multiple scales using model-free, deep reinforcement learning
Abstract Recent improvements in hardware and data collection have lowered the barrier to practical neural control. Most of the current contributions to the field have focus on model-based control, however, models of neural systems are quite complex and difficult to design. To circumvent these issues...
Guardado en:
Autores principales: | B. A. Mitchell, L. R. Petzold |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/912bcbee82b946038c3664f0651695fa |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deep Reinforcement Learning for Autonomous Water Heater Control
por: Kadir Amasyali, et al.
Publicado: (2021) -
Focused small-scale fisheries as complex systems using deep learning models
por: Cavieses-Núñez,Ricardo, et al.
Publicado: (2021) -
3D cephalometric landmark detection by multiple stage deep reinforcement learning
por: Sung Ho Kang, et al.
Publicado: (2021) -
Self-controlling photonic-on-chip networks with deep reinforcement learning
por: Nguyen Do, et al.
Publicado: (2021) -
Spiking Neural Network Discovers Energy-Efficient Hexapod Motion in Deep Reinforcement Learning
por: Katsumi Naya, et al.
Publicado: (2021)