Ship Detection in Sentinel 2 Multi-Spectral Images with Self-Supervised Learning
Automatic ship detection provides an essential function towards maritime domain awareness for security or economic monitoring purposes. This work presents an approach for training a deep learning ship detector in Sentinel-2 multi-spectral images with few labeled examples. We design a network archite...
Guardado en:
Autores principales: | Alina Ciocarlan, Andrei Stoian |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/912c51ff540e4c87bb036bda914e2e48 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Self-Supervised Learning for Anomaly Detection With Dynamic Local Augmentation
por: Seungdong Yoa, et al.
Publicado: (2021) -
Robust Damage Estimation of Typhoon Goni on Coconut Crops with Sentinel-2 Imagery
por: Andrés C. Rodríguez, et al.
Publicado: (2021) -
Joint Soft–Hard Attention for Self-Supervised Monocular Depth Estimation
por: Chao Fan, et al.
Publicado: (2021) -
Self-Supervised Monocular Depth Estimation With Extensive Pretraining
por: Hyukdoo Choi
Publicado: (2021) -
Self-Supervised Deep Convolutional Neural Network for Chest X-Ray Classification
por: Matej Gazda, et al.
Publicado: (2021)