Classification of apatite structures via topological data analysis: a framework for a ‘Materials Barcode’ representation of structure maps
Abstract This paper introduces the use of topological data analysis (TDA) as an unsupervised machine learning tool to uncover classification criteria in complex inorganic crystal chemistries. Using the apatite chemistry as a template, we track through the use of persistent homology the topological c...
Guardado en:
Autores principales: | Scott Broderick, Ruhil Dongol, Tianmu Zhang, Krishna Rajan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9134fcce99cf4ca2ad1ff3ff24fd1ef6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Multiple Instance Classification for Gastric Cancer Pathological Images Based on Implicit Spatial Topological Structure Representation
por: Xu Xiang, et al.
Publicado: (2021) -
A database framework for rapid screening of structure-function relationships in PFAS chemistry
por: An Su, et al.
Publicado: (2021) -
A study of topological structures on equi-continuous mappings
por: Gupta,Ankit, et al.
Publicado: (2021) -
Barcode extension for analysis and reconstruction of structures
por: Cameron Myhrvold, et al.
Publicado: (2017) -
Robust Motor Imagery Classification Using Sparse Representations and Grouping Structures
por: Vangelis P. Oikonomou, et al.
Publicado: (2020)