Robust inference of kinase activity using functional networks
Kinases drive fundamental changes in cell state, but predicting kinase activity based on substrate-level changes can be challenging. Here the authors introduce a computational framework that utilizes similarities between substrates to robustly infer kinase activity.
Guardado en:
Autores principales: | Serhan Yılmaz, Marzieh Ayati, Daniela Schlatzer, A. Ercüment Çiçek, Mark R. Chance, Mehmet Koyutürk |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/91396e4de4ab46f3a89cbb70ee623194 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Robust Method for Inferring Network Structures
por: Yang Yang, et al.
Publicado: (2017) -
Data-driven identification of subtypes of intimate partner violence
por: Ahmet Mert Hacıaliefendioğlu, et al.
Publicado: (2021) -
Network signatures of survival in glioblastoma multiforme.
por: Vishal N Patel, et al.
Publicado: (2013) -
A Highly Robust Binary Neural Network Inference Accelerator Based on Binary Memristors
por: Yiyang Zhao, et al.
Publicado: (2021) -
sPAGM: inferring subpathway activity by integrating gene and miRNA expression-robust functional signature identification for melanoma prognoses
por: Chun-Long Zhang, et al.
Publicado: (2017)