Vital signs assessed in initial clinical encounters predict COVID-19 mortality in an NYC hospital system
Abstract Timely and effective clinical decision-making for COVID-19 requires rapid identification of risk factors for disease outcomes. Our objective was to identify characteristics available immediately upon first clinical evaluation related COVID-19 mortality. We conducted a retrospective study of...
Enregistré dans:
| Auteurs principaux: | Elza Rechtman, Paul Curtin, Esmeralda Navarro, Sharon Nirenberg, Megan K. Horton |
|---|---|
| Format: | article |
| Langue: | EN |
| Publié: |
Nature Portfolio
2020
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/913b829d991644c5bc84f6e1d6c34b4f |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Predicting mortality risk for preterm infants using deep learning models with time-series vital sign data
par: Jiarui Feng, et autres
Publié: (2021) -
A vital sign-based prediction algorithm for differentiating COVID-19 versus seasonal influenza in hospitalized patients
par: Naveena Yanamala, et autres
Publié: (2021) -
Changes in Vital Signs and Laboratory Tests in Patients with Odontogenic Infections Requiring Hospitalization
par: Pavan,Eduardo P, et autres
Publié: (2020) -
#CDCGrandRounds and #VitalSigns: A Twitter Analysis
par: Ashley M. Jackson, et autres
Publié: (2018) -
Adaptative vital signs monitoring system based on the early warning score approach in smart hospital context
par: Imen Ben Ida, et autres
Publié: (2021)