Fused-Deep-Features Based Grape Leaf Disease Diagnosis
Rapid and accurate grape leaf disease diagnosis is of great significance to its yield and quality of grape. In this paper, aiming at the identification of grape leaf diseases, a fast and accurate detection method based on fused deep features, extracted from a convolutional neural network (CNN), plus...
Guardado en:
Autores principales: | Yun Peng, Shengyi Zhao, Jizhan Liu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9152ca6bd7af4f79b7368866d3756459 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Segmentation of Overlapping Grape Clusters Based on the Depth Region Growing Method
por: Yun Peng, et al.
Publicado: (2021) -
Attention_FPNet: Two-Branch Remote Sensing Image Pansharpening Network Based on Attention Feature Fusion
por: Xiwu Zhong, et al.
Publicado: (2021) -
Using a Hybrid Neural Network Model DCNN–LSTM for Image-Based Nitrogen Nutrition Diagnosis in Muskmelon
por: Liying Chang, et al.
Publicado: (2021) -
Coastal Waste Detection Based on Deep Convolutional Neural Networks
por: Chengjuan Ren, et al.
Publicado: (2021) -
Detection of Preventable Fetal Distress During Labor From Scanned Cardiotocogram Tracings Using Deep Learning
por: Martin G. Frasch, et al.
Publicado: (2021)