Combined unsupervised-supervised machine learning for phenotyping complex diseases with its application to obstructive sleep apnea
Abstract Unsupervised clustering models have been widely used for multimetric phenotyping of complex and heterogeneous diseases such as diabetes and obstructive sleep apnea (OSA) to more precisely characterize the disease beyond simplistic conventional diagnosis standards. However, the number of clu...
Guardado en:
Autores principales: | Eun-Yeol Ma, Jeong-Whun Kim, Youngmin Lee, Sung-Woo Cho, Heeyoung Kim, Jae Kyoung Kim |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/915a5d2798964ce88bcbdfa8e223f3ce |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Correlation between short-time and whole-night obstruction level tests for patients with obstructive sleep apnea
por: Jeong-Whun Kim, et al.
Publicado: (2021) -
Nonalcoholic fatty liver disease is associated with the development of obstructive sleep apnea
por: Goh Eun Chung, et al.
Publicado: (2021) -
Stress in obstructive sleep apnea
por: Jasmine L. Wong, et al.
Publicado: (2021) -
Hypertension and obstructive sleep apnea
por: Phillips CL, et al.
Publicado: (2013) -
Obstructive sleep apnea: current perspectives
por: Osman AM, et al.
Publicado: (2018)