Combined unsupervised-supervised machine learning for phenotyping complex diseases with its application to obstructive sleep apnea

Abstract Unsupervised clustering models have been widely used for multimetric phenotyping of complex and heterogeneous diseases such as diabetes and obstructive sleep apnea (OSA) to more precisely characterize the disease beyond simplistic conventional diagnosis standards. However, the number of clu...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Eun-Yeol Ma, Jeong-Whun Kim, Youngmin Lee, Sung-Woo Cho, Heeyoung Kim, Jae Kyoung Kim
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/915a5d2798964ce88bcbdfa8e223f3ce
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!