Combined unsupervised-supervised machine learning for phenotyping complex diseases with its application to obstructive sleep apnea
Abstract Unsupervised clustering models have been widely used for multimetric phenotyping of complex and heterogeneous diseases such as diabetes and obstructive sleep apnea (OSA) to more precisely characterize the disease beyond simplistic conventional diagnosis standards. However, the number of clu...
Enregistré dans:
Auteurs principaux: | , , , , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/915a5d2798964ce88bcbdfa8e223f3ce |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|