Real rectifiable currents, holomorphic chains and algebraic cycles
We study some fundamental properties of real rectifiable currents and give a generalization of King’s theorem to characterize currents defined by positive real holomorphic chains. Our main tool is Siu’s semi-continuity theorem and our proof largely simplifies King’s proof. A consequence of this resu...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/91655e6b896f4f40b0af1c86adfb7cd7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:91655e6b896f4f40b0af1c86adfb7cd7 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:91655e6b896f4f40b0af1c86adfb7cd72021-12-05T14:10:45ZReal rectifiable currents, holomorphic chains and algebraic cycles2300-744310.1515/coma-2020-0119https://doaj.org/article/91655e6b896f4f40b0af1c86adfb7cd72021-09-01T00:00:00Zhttps://doi.org/10.1515/coma-2020-0119https://doaj.org/toc/2300-7443We study some fundamental properties of real rectifiable currents and give a generalization of King’s theorem to characterize currents defined by positive real holomorphic chains. Our main tool is Siu’s semi-continuity theorem and our proof largely simplifies King’s proof. A consequence of this result is a sufficient condition for the Hodge conjecture.Teh Jyh-HaurYang Chin-JuiDe Gruyterarticlereal rectifiable currentreal holomorphic chainholomorphic subvarietyhodge conjecture32u4014c25MathematicsQA1-939ENComplex Manifolds, Vol 8, Iss 1, Pp 274-285 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
real rectifiable current real holomorphic chain holomorphic subvariety hodge conjecture 32u40 14c25 Mathematics QA1-939 |
spellingShingle |
real rectifiable current real holomorphic chain holomorphic subvariety hodge conjecture 32u40 14c25 Mathematics QA1-939 Teh Jyh-Haur Yang Chin-Jui Real rectifiable currents, holomorphic chains and algebraic cycles |
description |
We study some fundamental properties of real rectifiable currents and give a generalization of King’s theorem to characterize currents defined by positive real holomorphic chains. Our main tool is Siu’s semi-continuity theorem and our proof largely simplifies King’s proof. A consequence of this result is a sufficient condition for the Hodge conjecture. |
format |
article |
author |
Teh Jyh-Haur Yang Chin-Jui |
author_facet |
Teh Jyh-Haur Yang Chin-Jui |
author_sort |
Teh Jyh-Haur |
title |
Real rectifiable currents, holomorphic chains and algebraic cycles |
title_short |
Real rectifiable currents, holomorphic chains and algebraic cycles |
title_full |
Real rectifiable currents, holomorphic chains and algebraic cycles |
title_fullStr |
Real rectifiable currents, holomorphic chains and algebraic cycles |
title_full_unstemmed |
Real rectifiable currents, holomorphic chains and algebraic cycles |
title_sort |
real rectifiable currents, holomorphic chains and algebraic cycles |
publisher |
De Gruyter |
publishDate |
2021 |
url |
https://doaj.org/article/91655e6b896f4f40b0af1c86adfb7cd7 |
work_keys_str_mv |
AT tehjyhhaur realrectifiablecurrentsholomorphicchainsandalgebraiccycles AT yangchinjui realrectifiablecurrentsholomorphicchainsandalgebraiccycles |
_version_ |
1718371766442655744 |