Real rectifiable currents, holomorphic chains and algebraic cycles

We study some fundamental properties of real rectifiable currents and give a generalization of King’s theorem to characterize currents defined by positive real holomorphic chains. Our main tool is Siu’s semi-continuity theorem and our proof largely simplifies King’s proof. A consequence of this resu...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Teh Jyh-Haur, Yang Chin-Jui
Format: article
Langue:EN
Publié: De Gruyter 2021
Sujets:
Accès en ligne:https://doaj.org/article/91655e6b896f4f40b0af1c86adfb7cd7
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
id oai:doaj.org-article:91655e6b896f4f40b0af1c86adfb7cd7
record_format dspace
spelling oai:doaj.org-article:91655e6b896f4f40b0af1c86adfb7cd72021-12-05T14:10:45ZReal rectifiable currents, holomorphic chains and algebraic cycles2300-744310.1515/coma-2020-0119https://doaj.org/article/91655e6b896f4f40b0af1c86adfb7cd72021-09-01T00:00:00Zhttps://doi.org/10.1515/coma-2020-0119https://doaj.org/toc/2300-7443We study some fundamental properties of real rectifiable currents and give a generalization of King’s theorem to characterize currents defined by positive real holomorphic chains. Our main tool is Siu’s semi-continuity theorem and our proof largely simplifies King’s proof. A consequence of this result is a sufficient condition for the Hodge conjecture.Teh Jyh-HaurYang Chin-JuiDe Gruyterarticlereal rectifiable currentreal holomorphic chainholomorphic subvarietyhodge conjecture32u4014c25MathematicsQA1-939ENComplex Manifolds, Vol 8, Iss 1, Pp 274-285 (2021)
institution DOAJ
collection DOAJ
language EN
topic real rectifiable current
real holomorphic chain
holomorphic subvariety
hodge conjecture
32u40
14c25
Mathematics
QA1-939
spellingShingle real rectifiable current
real holomorphic chain
holomorphic subvariety
hodge conjecture
32u40
14c25
Mathematics
QA1-939
Teh Jyh-Haur
Yang Chin-Jui
Real rectifiable currents, holomorphic chains and algebraic cycles
description We study some fundamental properties of real rectifiable currents and give a generalization of King’s theorem to characterize currents defined by positive real holomorphic chains. Our main tool is Siu’s semi-continuity theorem and our proof largely simplifies King’s proof. A consequence of this result is a sufficient condition for the Hodge conjecture.
format article
author Teh Jyh-Haur
Yang Chin-Jui
author_facet Teh Jyh-Haur
Yang Chin-Jui
author_sort Teh Jyh-Haur
title Real rectifiable currents, holomorphic chains and algebraic cycles
title_short Real rectifiable currents, holomorphic chains and algebraic cycles
title_full Real rectifiable currents, holomorphic chains and algebraic cycles
title_fullStr Real rectifiable currents, holomorphic chains and algebraic cycles
title_full_unstemmed Real rectifiable currents, holomorphic chains and algebraic cycles
title_sort real rectifiable currents, holomorphic chains and algebraic cycles
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/91655e6b896f4f40b0af1c86adfb7cd7
work_keys_str_mv AT tehjyhhaur realrectifiablecurrentsholomorphicchainsandalgebraiccycles
AT yangchinjui realrectifiablecurrentsholomorphicchainsandalgebraiccycles
_version_ 1718371766442655744