A transfer learning framework based on motor imagery rehabilitation for stroke

Abstract Deep learning networks have been successfully applied to transfer functions so that the models can be adapted from the source domain to different target domains. This study uses multiple convolutional neural networks to decode the electroencephalogram (EEG) of stroke patients to design effe...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Fangzhou Xu, Yunjing Miao, Yanan Sun, Dongju Guo, Jiali Xu, Yuandong Wang, Jincheng Li, Han Li, Gege Dong, Fenqi Rong, Jiancai Leng, Yang Zhang
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/91657dde3ad84e49b736e205c3ce48b4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:91657dde3ad84e49b736e205c3ce48b4
record_format dspace
spelling oai:doaj.org-article:91657dde3ad84e49b736e205c3ce48b42021-12-02T17:13:22ZA transfer learning framework based on motor imagery rehabilitation for stroke10.1038/s41598-021-99114-12045-2322https://doaj.org/article/91657dde3ad84e49b736e205c3ce48b42021-10-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-99114-1https://doaj.org/toc/2045-2322Abstract Deep learning networks have been successfully applied to transfer functions so that the models can be adapted from the source domain to different target domains. This study uses multiple convolutional neural networks to decode the electroencephalogram (EEG) of stroke patients to design effective motor imagery (MI) brain-computer interface (BCI) system. This study has introduced ‘fine-tune’ to transfer model parameters and reduced training time. The performance of the proposed framework is evaluated by the abilities of the models for two-class MI recognition. The results show that the best framework is the combination of the EEGNet and ‘fine-tune’ transferred model. The average classification accuracy of the proposed model for 11 subjects is 66.36%, and the algorithm complexity is much lower than other models.These good performance indicate that the EEGNet model has great potential for MI stroke rehabilitation based on BCI system. It also successfully demonstrated the efficiency of transfer learning for improving the performance of EEG-based stroke rehabilitation for the BCI system.Fangzhou XuYunjing MiaoYanan SunDongju GuoJiali XuYuandong WangJincheng LiHan LiGege DongFenqi RongJiancai LengYang ZhangNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-9 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Fangzhou Xu
Yunjing Miao
Yanan Sun
Dongju Guo
Jiali Xu
Yuandong Wang
Jincheng Li
Han Li
Gege Dong
Fenqi Rong
Jiancai Leng
Yang Zhang
A transfer learning framework based on motor imagery rehabilitation for stroke
description Abstract Deep learning networks have been successfully applied to transfer functions so that the models can be adapted from the source domain to different target domains. This study uses multiple convolutional neural networks to decode the electroencephalogram (EEG) of stroke patients to design effective motor imagery (MI) brain-computer interface (BCI) system. This study has introduced ‘fine-tune’ to transfer model parameters and reduced training time. The performance of the proposed framework is evaluated by the abilities of the models for two-class MI recognition. The results show that the best framework is the combination of the EEGNet and ‘fine-tune’ transferred model. The average classification accuracy of the proposed model for 11 subjects is 66.36%, and the algorithm complexity is much lower than other models.These good performance indicate that the EEGNet model has great potential for MI stroke rehabilitation based on BCI system. It also successfully demonstrated the efficiency of transfer learning for improving the performance of EEG-based stroke rehabilitation for the BCI system.
format article
author Fangzhou Xu
Yunjing Miao
Yanan Sun
Dongju Guo
Jiali Xu
Yuandong Wang
Jincheng Li
Han Li
Gege Dong
Fenqi Rong
Jiancai Leng
Yang Zhang
author_facet Fangzhou Xu
Yunjing Miao
Yanan Sun
Dongju Guo
Jiali Xu
Yuandong Wang
Jincheng Li
Han Li
Gege Dong
Fenqi Rong
Jiancai Leng
Yang Zhang
author_sort Fangzhou Xu
title A transfer learning framework based on motor imagery rehabilitation for stroke
title_short A transfer learning framework based on motor imagery rehabilitation for stroke
title_full A transfer learning framework based on motor imagery rehabilitation for stroke
title_fullStr A transfer learning framework based on motor imagery rehabilitation for stroke
title_full_unstemmed A transfer learning framework based on motor imagery rehabilitation for stroke
title_sort transfer learning framework based on motor imagery rehabilitation for stroke
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/91657dde3ad84e49b736e205c3ce48b4
work_keys_str_mv AT fangzhouxu atransferlearningframeworkbasedonmotorimageryrehabilitationforstroke
AT yunjingmiao atransferlearningframeworkbasedonmotorimageryrehabilitationforstroke
AT yanansun atransferlearningframeworkbasedonmotorimageryrehabilitationforstroke
AT dongjuguo atransferlearningframeworkbasedonmotorimageryrehabilitationforstroke
AT jialixu atransferlearningframeworkbasedonmotorimageryrehabilitationforstroke
AT yuandongwang atransferlearningframeworkbasedonmotorimageryrehabilitationforstroke
AT jinchengli atransferlearningframeworkbasedonmotorimageryrehabilitationforstroke
AT hanli atransferlearningframeworkbasedonmotorimageryrehabilitationforstroke
AT gegedong atransferlearningframeworkbasedonmotorimageryrehabilitationforstroke
AT fenqirong atransferlearningframeworkbasedonmotorimageryrehabilitationforstroke
AT jiancaileng atransferlearningframeworkbasedonmotorimageryrehabilitationforstroke
AT yangzhang atransferlearningframeworkbasedonmotorimageryrehabilitationforstroke
AT fangzhouxu transferlearningframeworkbasedonmotorimageryrehabilitationforstroke
AT yunjingmiao transferlearningframeworkbasedonmotorimageryrehabilitationforstroke
AT yanansun transferlearningframeworkbasedonmotorimageryrehabilitationforstroke
AT dongjuguo transferlearningframeworkbasedonmotorimageryrehabilitationforstroke
AT jialixu transferlearningframeworkbasedonmotorimageryrehabilitationforstroke
AT yuandongwang transferlearningframeworkbasedonmotorimageryrehabilitationforstroke
AT jinchengli transferlearningframeworkbasedonmotorimageryrehabilitationforstroke
AT hanli transferlearningframeworkbasedonmotorimageryrehabilitationforstroke
AT gegedong transferlearningframeworkbasedonmotorimageryrehabilitationforstroke
AT fenqirong transferlearningframeworkbasedonmotorimageryrehabilitationforstroke
AT jiancaileng transferlearningframeworkbasedonmotorimageryrehabilitationforstroke
AT yangzhang transferlearningframeworkbasedonmotorimageryrehabilitationforstroke
_version_ 1718381331353698304