A transfer learning framework based on motor imagery rehabilitation for stroke
Abstract Deep learning networks have been successfully applied to transfer functions so that the models can be adapted from the source domain to different target domains. This study uses multiple convolutional neural networks to decode the electroencephalogram (EEG) of stroke patients to design effe...
Enregistré dans:
Auteurs principaux: | Fangzhou Xu, Yunjing Miao, Yanan Sun, Dongju Guo, Jiali Xu, Yuandong Wang, Jincheng Li, Han Li, Gege Dong, Fenqi Rong, Jiancai Leng, Yang Zhang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/91657dde3ad84e49b736e205c3ce48b4 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
The Association between Mental Motor Imagery and Real Movement in Stroke
par: Ana Poveda-García, et autres
Publié: (2021) -
Motor Imagery-Based Brain-Computer Interface Combined with Multimodal Feedback to Promote Upper Limb Motor Function after Stroke: A Preliminary Study
par: Yi-Qian Hu, et autres
Publié: (2021) -
Characterization of kinesthetic motor imagery compared with visual motor imageries
par: Yu Jin Yang, et autres
Publié: (2021) -
Effects of task complexity or rate of motor imagery on motor learning in healthy young adults
par: Nargis Heena, et autres
Publié: (2021) -
Handedness effects on motor imagery during kinesthetic and visual-motor conditions
par: Dariusz Zapała, et autres
Publié: (2021)