Predicting Serum Levels of Lithium-Treated Patients: A Supervised Machine Learning Approach
Routine monitoring of lithium levels is common clinical practice. This is because the lithium prediction strategies available developed by previous studies are still limited due to insufficient prediction performance. Thus, we used machine learning approaches to predict lithium concentration in a la...
Guardado en:
Autores principales: | Chih-Wei Hsu, Shang-Ying Tsai, Liang-Jen Wang, Chih-Sung Liang, Andre F. Carvalho, Marco Solmi, Eduard Vieta, Pao-Yen Lin, Chien-An Hu, Hung-Yu Kao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/916e42c8d5484171be0701de89439476 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Modeling Structure–Activity Relationship of AMPK Activation
por: Jürgen Drewe, et al.
Publicado: (2021) -
Application of machine learning to predict the outcome of pediatric traumatic brain injury
por: Thara Tunthanathip, et al.
Publicado: (2021) -
Design and analysis of quantum powered support vector machines for malignant breast cancer diagnosis
por: Vashisth Shubham, et al.
Publicado: (2021) -
Machine Learning Applications in Modelling and Analysis of Base Pressure in Suddenly Expanded Flows
por: Jaimon Dennis Quadros, et al.
Publicado: (2021) -
Aspect Category Classification dengan Pendekatan Machine Learning Menggunakan Dataset Bahasa Indonesia
por: Syaifulloh Amien Pandega Perdana, et al.
Publicado: (2021)