Training machine learning models on climate model output yields skillful interpretable seasonal precipitation forecasts
Seasonal forecasting skill in machine learning methods that are trained on large climate model ensembles can compete with, or out-compete, existing dynamical models, while retaining physical interpretability.
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/91735fc8166e455f88e2a5b2a1307447 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:91735fc8166e455f88e2a5b2a1307447 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:91735fc8166e455f88e2a5b2a13074472021-12-02T16:28:50ZTraining machine learning models on climate model output yields skillful interpretable seasonal precipitation forecasts10.1038/s43247-021-00225-42662-4435https://doaj.org/article/91735fc8166e455f88e2a5b2a13074472021-08-01T00:00:00Zhttps://doi.org/10.1038/s43247-021-00225-4https://doaj.org/toc/2662-4435Seasonal forecasting skill in machine learning methods that are trained on large climate model ensembles can compete with, or out-compete, existing dynamical models, while retaining physical interpretability.Peter B. GibsonWilliam E. ChapmanAlphan AltinokLuca Delle MonacheMichael J. DeFlorioDuane E. WaliserNature PortfolioarticleGeologyQE1-996.5Environmental sciencesGE1-350ENCommunications Earth & Environment, Vol 2, Iss 1, Pp 1-13 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Geology QE1-996.5 Environmental sciences GE1-350 |
spellingShingle |
Geology QE1-996.5 Environmental sciences GE1-350 Peter B. Gibson William E. Chapman Alphan Altinok Luca Delle Monache Michael J. DeFlorio Duane E. Waliser Training machine learning models on climate model output yields skillful interpretable seasonal precipitation forecasts |
description |
Seasonal forecasting skill in machine learning methods that are trained on large climate model ensembles can compete with, or out-compete, existing dynamical models, while retaining physical interpretability. |
format |
article |
author |
Peter B. Gibson William E. Chapman Alphan Altinok Luca Delle Monache Michael J. DeFlorio Duane E. Waliser |
author_facet |
Peter B. Gibson William E. Chapman Alphan Altinok Luca Delle Monache Michael J. DeFlorio Duane E. Waliser |
author_sort |
Peter B. Gibson |
title |
Training machine learning models on climate model output yields skillful interpretable seasonal precipitation forecasts |
title_short |
Training machine learning models on climate model output yields skillful interpretable seasonal precipitation forecasts |
title_full |
Training machine learning models on climate model output yields skillful interpretable seasonal precipitation forecasts |
title_fullStr |
Training machine learning models on climate model output yields skillful interpretable seasonal precipitation forecasts |
title_full_unstemmed |
Training machine learning models on climate model output yields skillful interpretable seasonal precipitation forecasts |
title_sort |
training machine learning models on climate model output yields skillful interpretable seasonal precipitation forecasts |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/91735fc8166e455f88e2a5b2a1307447 |
work_keys_str_mv |
AT peterbgibson trainingmachinelearningmodelsonclimatemodeloutputyieldsskillfulinterpretableseasonalprecipitationforecasts AT williamechapman trainingmachinelearningmodelsonclimatemodeloutputyieldsskillfulinterpretableseasonalprecipitationforecasts AT alphanaltinok trainingmachinelearningmodelsonclimatemodeloutputyieldsskillfulinterpretableseasonalprecipitationforecasts AT lucadellemonache trainingmachinelearningmodelsonclimatemodeloutputyieldsskillfulinterpretableseasonalprecipitationforecasts AT michaeljdeflorio trainingmachinelearningmodelsonclimatemodeloutputyieldsskillfulinterpretableseasonalprecipitationforecasts AT duaneewaliser trainingmachinelearningmodelsonclimatemodeloutputyieldsskillfulinterpretableseasonalprecipitationforecasts |
_version_ |
1718383941598052352 |