Training machine learning models on climate model output yields skillful interpretable seasonal precipitation forecasts
Seasonal forecasting skill in machine learning methods that are trained on large climate model ensembles can compete with, or out-compete, existing dynamical models, while retaining physical interpretability.
Guardado en:
Autores principales: | Peter B. Gibson, William E. Chapman, Alphan Altinok, Luca Delle Monache, Michael J. DeFlorio, Duane E. Waliser |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/91735fc8166e455f88e2a5b2a1307447 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A critical examination of a newly proposed interhemispheric teleconnection to Southwestern US winter precipitation
por: Peter B. Gibson, et al.
Publicado: (2019) -
Flood forecasting using quantitative precipitation forecasts and hydrological modeling in the Sebeya catchment, Rwanda
por: Mukakarangwa Assoumpta, et al.
Publicado: (2021) -
Analysis of a Short-Term and a Seasonal Precipitation Forecast over Kenya
por: Sara Miller, et al.
Publicado: (2021) -
Research on Precipitation Forecast Based on LSTM–CP Combined Model
por: Yan Guo, et al.
Publicado: (2021) -
Evaluating Quantitative Precipitation Forecasts Using the 2.5 km CReSS Model for Typhoons in Taiwan: An Update through the 2015 Season
por: Chung-Chieh Wang, et al.
Publicado: (2021)