Comparative Genomics of Early-Diverging <italic toggle="yes">Brucella</italic> Strains Reveals a Novel Lipopolysaccharide Biosynthesis Pathway

ABSTRACT Brucella species are Gram-negative bacteria that infect mammals. Recently, two unusual strains (Brucella inopinata BO1T and B. inopinata-like BO2) have been isolated from human patients, and their similarity to some atypical brucellae isolated from Australian native rodent species was noted...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Alice R. Wattam, Thomas J. Inzana, Kelly P. Williams, Shrinivasrao P. Mane, Maulik Shukla, Nalvo F. Almeida, Allan W. Dickerman, Steven Mason, Ignacio Moriyón, David O’Callaghan, Adrian M. Whatmore, Bruno W. Sobral, Rebekah V. Tiller, Alex R. Hoffmaster, Michael A. Frace, Cristina De Castro, Antonio Molinaro, Stephen M. Boyle, Barun K. De, João C. Setubal
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2012
Materias:
Acceso en línea:https://doaj.org/article/917da65e0f394b86a9e8d26345cca254
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:ABSTRACT Brucella species are Gram-negative bacteria that infect mammals. Recently, two unusual strains (Brucella inopinata BO1T and B. inopinata-like BO2) have been isolated from human patients, and their similarity to some atypical brucellae isolated from Australian native rodent species was noted. Here we present a phylogenomic analysis of the draft genome sequences of BO1T and BO2 and of the Australian rodent strains 83-13 and NF2653 that shows that they form two groups well separated from the other sequenced Brucella spp. Several important differences were noted. Both BO1T and BO2 did not agglutinate significantly when live or inactivated cells were exposed to monospecific A and M antisera against O-side chain sugars composed of N-formyl-perosamine. While BO1T maintained the genes required to synthesize a typical Brucella O-antigen, BO2 lacked many of these genes but still produced a smooth LPS (lipopolysaccharide). Most missing genes were found in the wbk region involved in O-antigen synthesis in classic smooth Brucella spp. In their place, BO2 carries four genes that other bacteria use for making a rhamnose-based O-antigen. Electrophoretic, immunoblot, and chemical analyses showed that BO2 carries an antigenically different O-antigen made of repeating hexose-rich oligosaccharide units that made the LPS water-soluble, which contrasts with the homopolymeric O-antigen of other smooth brucellae that have a phenol-soluble LPS. The results demonstrate the existence of a group of early-diverging brucellae with traits that depart significantly from those of the Brucella species described thus far. IMPORTANCE This report examines differences between genomes from four new Brucella strains and those from the classic Brucella spp. Our results show that the four new strains are outliers with respect to the previously known Brucella strains and yet are part of the genus, forming two new clades. The analysis revealed important information about the evolution and survival mechanisms of Brucella species, helping reshape our knowledge of this important zoonotic pathogen. One discovery of special importance is that one of the strains, BO2, produces an O-antigen distinct from any that has been seen in any other Brucella isolates to date.