Early Palaeozoic ocean anoxia and global warming driven by the evolution of shallow burrowing
The extent to which the onset of bioturbation affected global biogeochemistry during the Palaeozoic remains unclear. Here, the authors integrate bioturbation into the COPSE model, compare output with geochemical proxies, and suggest shallow burrowing contributed to a global low oxygen state during t...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/918906cc22d24adbb80c148035aa59d6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | The extent to which the onset of bioturbation affected global biogeochemistry during the Palaeozoic remains unclear. Here, the authors integrate bioturbation into the COPSE model, compare output with geochemical proxies, and suggest shallow burrowing contributed to a global low oxygen state during the early Cambrian. |
---|