Deep learned recurrent type-3 fuzzy system: Application for renewable energy modeling/prediction
A deep learned recurrent type-3 (RT3) fuzzy logic system (FLS) with nonlinear consequent part is presented for renewable energy modeling and prediction. Beside the rule parameters, the values of horizontal slices and membership function (MF) parameters are also optimized. The stability of suggested...
Guardado en:
Autores principales: | Yan Cao, Amir Raise, Ardashir Mohammadzadeh, Sakthivel Rathinasamy, Shahab S. Band, Amirhosein Mosavi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9190d08ce3174b15803a94f466204d85 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Simulation Model of Wind Turbine Power Control System with Fuzzy Regulation by Mamdani and Larsen Algorithms
por: Ghada Adel Aziz
Publicado: (2017) -
MPPT Improvement for PMSG-Based Wind Turbines Using Extended Kalman Filter and Fuzzy Control System
por: Amirsoheil Honarbari, et al.
Publicado: (2021) -
Analysis of the Wind Turbine Selection for the Given Wind Conditions
por: Waldemar Kuczyński, et al.
Publicado: (2021) -
Multicriteria wind potential assessment using fuzzy logic in decision making: A case study of Iran
por: Amin Aryanfar, et al.
Publicado: (2021) -
Non-Singleton Type-3 Fuzzy Approach for Flowmeter Fault Detection: Experimental Study in a Gas Industry
por: Jing-he Wang, et al.
Publicado: (2021)