A spectrogram image based intelligent technique for automatic detection of autism spectrum disorder from EEG.
Autism spectrum disorder (ASD) is a developmental disability characterized by persistent impairments in social interaction, speech and nonverbal communication, and restricted or repetitive behaviors. Currently Electroencephalography (EEG) is the most popular tool to inspect the existence of neurolog...
Guardado en:
Autores principales: | Md Nurul Ahad Tawhid, Siuly Siuly, Hua Wang, Frank Whittaker, Kate Wang, Yanchun Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/91a6faa56c3240f9a3a067ee9e622690 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Automatic Detection of Atmospherics and Tweek Atmospherics in Radio Spectrograms Based on a Deep Learning Approach
por: Viera Maslej‐Krešňáková, et al.
Publicado: (2021) -
EEG Analytics for Early Detection of Autism Spectrum Disorder: A data-driven approach
por: William J. Bosl, et al.
Publicado: (2018) -
Functional connectivity in the first year of life in infants at risk for autism spectrum disorder: an EEG study.
por: Giulia Righi, et al.
Publicado: (2014) -
Generalized Spectrograms and t -Wigner Transforms
por: PAOLO,BOGGIATTO, et al.
Publicado: (2010) -
Prediction of autism spectrum disorder diagnosis using nonlinear measures of language-related EEG at 6 and 12 months
por: Fleming C. Peck, et al.
Publicado: (2021)