Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias.
MAXENT is now a common species distribution modeling (SDM) tool used by conservation practitioners for predicting the distribution of a species from a set of records and environmental predictors. However, datasets of species occurrence used to train the model are often biased in the geographical spa...
Saved in:
Main Authors: | Yoan Fourcade, Jan O Engler, Dennis Rödder, Jean Secondi |
---|---|
Format: | article |
Language: | EN |
Published: |
Public Library of Science (PLoS)
2014
|
Subjects: | |
Online Access: | https://doaj.org/article/91bb1374b9de42a59b3c0cec141b3ed4 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Effect of selection bias on two sample summary data based Mendelian randomization
by: Kai Wang, et al.
Published: (2021) -
Exploiting collider bias to apply two-sample summary data Mendelian randomization methods to one-sample individual level data.
by: Ciarrah Barry, et al.
Published: (2021) -
Sampling bias overestimates climate change impacts on forest growth in the southwestern United States
by: Stefan Klesse, et al.
Published: (2018) -
Biased sequential sampling underlies the effects of time pressure and delay in social decision making
by: Fadong Chen, et al.
Published: (2018) -
Bias correction capabilities of quantile mapping methods for rainfall and temperature variables
by: Maedeh Enayati, et al.
Published: (2021)