Automated retinal imaging and trend analysis – a tool for health monitoring
Karin Roesch, Tristan Swedish, Ramesh Raskar MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA Abstract: Most current diagnostic devices are expensive, require trained specialists to operate and gather static images with sparse data points. This leads to preventable diseases...
Guardado en:
Autores principales: | Roesch K, Swedish T, Raskar R |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/91c6df8a45c441c5a63e671eea5b0b6f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Artificial Intelligence to Identify Retinal Fundus Images, Quality Validation, Laterality Evaluation, Macular Degeneration, and Suspected Glaucoma
por: Zapata MA, et al.
Publicado: (2020) -
Glaucoma related retinal oximetry: a technology update
por: Yap ZL, et al.
Publicado: (2018) -
Inter-eye comparison of retinal oximetry and vessel caliber between eyes with asymmetrical glaucoma severity in different glaucoma subtypes
por: Cheng CS, et al.
Publicado: (2016) -
Adaptive optics scanning laser ophthalmoscope imaging: technology update
por: Merino D, et al.
Publicado: (2016) -
Increasing trend in rhegmatogenous retinal detachment in Korea from 2004 to 2015
por: Jun Young Park, et al.
Publicado: (2021)