Robust learning from noisy, incomplete, high-dimensional experimental data via physically constrained symbolic regression
Reinbold et al. propose a physics-informed data-driven approach that successfully discovers a dynamical model using high-dimensional, noisy and incomplete experimental data describing a weakly turbulent fluid flow. This approach is relevant to other non-equilibrium spatially-extended systems.
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/91ce2a92429f49c5b56333d6015733b7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:91ce2a92429f49c5b56333d6015733b7 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:91ce2a92429f49c5b56333d6015733b72021-12-02T15:00:50ZRobust learning from noisy, incomplete, high-dimensional experimental data via physically constrained symbolic regression10.1038/s41467-021-23479-02041-1723https://doaj.org/article/91ce2a92429f49c5b56333d6015733b72021-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-23479-0https://doaj.org/toc/2041-1723Reinbold et al. propose a physics-informed data-driven approach that successfully discovers a dynamical model using high-dimensional, noisy and incomplete experimental data describing a weakly turbulent fluid flow. This approach is relevant to other non-equilibrium spatially-extended systems.Patrick A. K. ReinboldLogan M. KageorgeMichael F. SchatzRoman O. GrigorievNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-8 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Patrick A. K. Reinbold Logan M. Kageorge Michael F. Schatz Roman O. Grigoriev Robust learning from noisy, incomplete, high-dimensional experimental data via physically constrained symbolic regression |
description |
Reinbold et al. propose a physics-informed data-driven approach that successfully discovers a dynamical model using high-dimensional, noisy and incomplete experimental data describing a weakly turbulent fluid flow. This approach is relevant to other non-equilibrium spatially-extended systems. |
format |
article |
author |
Patrick A. K. Reinbold Logan M. Kageorge Michael F. Schatz Roman O. Grigoriev |
author_facet |
Patrick A. K. Reinbold Logan M. Kageorge Michael F. Schatz Roman O. Grigoriev |
author_sort |
Patrick A. K. Reinbold |
title |
Robust learning from noisy, incomplete, high-dimensional experimental data via physically constrained symbolic regression |
title_short |
Robust learning from noisy, incomplete, high-dimensional experimental data via physically constrained symbolic regression |
title_full |
Robust learning from noisy, incomplete, high-dimensional experimental data via physically constrained symbolic regression |
title_fullStr |
Robust learning from noisy, incomplete, high-dimensional experimental data via physically constrained symbolic regression |
title_full_unstemmed |
Robust learning from noisy, incomplete, high-dimensional experimental data via physically constrained symbolic regression |
title_sort |
robust learning from noisy, incomplete, high-dimensional experimental data via physically constrained symbolic regression |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/91ce2a92429f49c5b56333d6015733b7 |
work_keys_str_mv |
AT patrickakreinbold robustlearningfromnoisyincompletehighdimensionalexperimentaldataviaphysicallyconstrainedsymbolicregression AT loganmkageorge robustlearningfromnoisyincompletehighdimensionalexperimentaldataviaphysicallyconstrainedsymbolicregression AT michaelfschatz robustlearningfromnoisyincompletehighdimensionalexperimentaldataviaphysicallyconstrainedsymbolicregression AT romanogrigoriev robustlearningfromnoisyincompletehighdimensionalexperimentaldataviaphysicallyconstrainedsymbolicregression |
_version_ |
1718389152401063936 |