Robust learning from noisy, incomplete, high-dimensional experimental data via physically constrained symbolic regression

Reinbold et al. propose a physics-informed data-driven approach that successfully discovers a dynamical model using high-dimensional, noisy and incomplete experimental data describing a weakly turbulent fluid flow. This approach is relevant to other non-equilibrium spatially-extended systems.

Guardado en:
Detalles Bibliográficos
Autores principales: Patrick A. K. Reinbold, Logan M. Kageorge, Michael F. Schatz, Roman O. Grigoriev
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/91ce2a92429f49c5b56333d6015733b7
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:91ce2a92429f49c5b56333d6015733b7
record_format dspace
spelling oai:doaj.org-article:91ce2a92429f49c5b56333d6015733b72021-12-02T15:00:50ZRobust learning from noisy, incomplete, high-dimensional experimental data via physically constrained symbolic regression10.1038/s41467-021-23479-02041-1723https://doaj.org/article/91ce2a92429f49c5b56333d6015733b72021-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-23479-0https://doaj.org/toc/2041-1723Reinbold et al. propose a physics-informed data-driven approach that successfully discovers a dynamical model using high-dimensional, noisy and incomplete experimental data describing a weakly turbulent fluid flow. This approach is relevant to other non-equilibrium spatially-extended systems.Patrick A. K. ReinboldLogan M. KageorgeMichael F. SchatzRoman O. GrigorievNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-8 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Patrick A. K. Reinbold
Logan M. Kageorge
Michael F. Schatz
Roman O. Grigoriev
Robust learning from noisy, incomplete, high-dimensional experimental data via physically constrained symbolic regression
description Reinbold et al. propose a physics-informed data-driven approach that successfully discovers a dynamical model using high-dimensional, noisy and incomplete experimental data describing a weakly turbulent fluid flow. This approach is relevant to other non-equilibrium spatially-extended systems.
format article
author Patrick A. K. Reinbold
Logan M. Kageorge
Michael F. Schatz
Roman O. Grigoriev
author_facet Patrick A. K. Reinbold
Logan M. Kageorge
Michael F. Schatz
Roman O. Grigoriev
author_sort Patrick A. K. Reinbold
title Robust learning from noisy, incomplete, high-dimensional experimental data via physically constrained symbolic regression
title_short Robust learning from noisy, incomplete, high-dimensional experimental data via physically constrained symbolic regression
title_full Robust learning from noisy, incomplete, high-dimensional experimental data via physically constrained symbolic regression
title_fullStr Robust learning from noisy, incomplete, high-dimensional experimental data via physically constrained symbolic regression
title_full_unstemmed Robust learning from noisy, incomplete, high-dimensional experimental data via physically constrained symbolic regression
title_sort robust learning from noisy, incomplete, high-dimensional experimental data via physically constrained symbolic regression
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/91ce2a92429f49c5b56333d6015733b7
work_keys_str_mv AT patrickakreinbold robustlearningfromnoisyincompletehighdimensionalexperimentaldataviaphysicallyconstrainedsymbolicregression
AT loganmkageorge robustlearningfromnoisyincompletehighdimensionalexperimentaldataviaphysicallyconstrainedsymbolicregression
AT michaelfschatz robustlearningfromnoisyincompletehighdimensionalexperimentaldataviaphysicallyconstrainedsymbolicregression
AT romanogrigoriev robustlearningfromnoisyincompletehighdimensionalexperimentaldataviaphysicallyconstrainedsymbolicregression
_version_ 1718389152401063936