Robust learning from noisy, incomplete, high-dimensional experimental data via physically constrained symbolic regression
Reinbold et al. propose a physics-informed data-driven approach that successfully discovers a dynamical model using high-dimensional, noisy and incomplete experimental data describing a weakly turbulent fluid flow. This approach is relevant to other non-equilibrium spatially-extended systems.
Guardado en:
Autores principales: | Patrick A. K. Reinbold, Logan M. Kageorge, Michael F. Schatz, Roman O. Grigoriev |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/91ce2a92429f49c5b56333d6015733b7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Constrained tolerance rough set in incomplete information systems
por: Renxia Wan, et al.
Publicado: (2021) -
Application of symbolic regression for constitutive modeling of plastic deformation
por: Evgeniya Kabliman, et al.
Publicado: (2021) -
Experimental demonstration of robust entanglement distribution over reciprocal noisy channels assisted by a counter-propagating classical reference light
por: Rikizo Ikuta, et al.
Publicado: (2017) -
STRUCTURALLY CONSTRAINED ROBUST OPTIMAL CONTROL
por: Peña M,Héctor, et al.
Publicado: (2006) -
Machine learning of high dimensional data on a noisy quantum processor
por: Evan Peters, et al.
Publicado: (2021)