Robust learning from noisy, incomplete, high-dimensional experimental data via physically constrained symbolic regression

Reinbold et al. propose a physics-informed data-driven approach that successfully discovers a dynamical model using high-dimensional, noisy and incomplete experimental data describing a weakly turbulent fluid flow. This approach is relevant to other non-equilibrium spatially-extended systems.

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Patrick A. K. Reinbold, Logan M. Kageorge, Michael F. Schatz, Roman O. Grigoriev
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
Q
Accès en ligne:https://doaj.org/article/91ce2a92429f49c5b56333d6015733b7
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!