ElemNet: Deep Learning the Chemistry of Materials From Only Elemental Composition
Abstract Conventional machine learning approaches for predicting material properties from elemental compositions have emphasized the importance of leveraging domain knowledge when designing model inputs. Here, we demonstrate that by using a deep learning approach, we can bypass such manual feature e...
Enregistré dans:
Auteurs principaux: | Dipendra Jha, Logan Ward, Arindam Paul, Wei-keng Liao, Alok Choudhary, Chris Wolverton, Ankit Agrawal |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2018
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/91d0cbe550334e66bd4c6aaf25de24d9 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Combined Deep Learning and SOR Detection Technique for High Reliability in Massive MIMO Systems
par: Jun-Yong Jang, et autres
Publié: (2021) -
Selective Untargeted Evasion Attack: An Adversarial Example That Will Not Be Classified as Certain Avoided Classes
par: Hyun Kwon, et autres
Publié: (2019) -
Multi-Targeted Adversarial Example in Evasion Attack on Deep Neural Network
par: Hyun Kwon, et autres
Publié: (2018) -
Restricted Evasion Attack: Generation of Restricted-Area Adversarial Example
par: Hyun Kwon, et autres
Publié: (2019) -
Photorealistic Reconstruction of Visual Texture From EEG Signals
par: Suguru Wakita, et autres
Publié: (2021)