Semi-Hyers–Ulam–Rassias Stability of a Volterra Integro-Differential Equation of Order I with a Convolution Type Kernel via Laplace Transform
In this paper, we investigate the semi-Hyers–Ulam–Rassias stability of a Volterra integro-differential equation of order I with a convolution type kernel. To this purpose the Laplace transform is used. The results obtained show that the stability holds for problems formulated with various functions:...
Guardado en:
Autores principales: | Daniela Inoan, Daniela Marian |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/91dabfca830944459949ea2c1e5634f9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Semi-Hyers–Ulam–Rassias Stability of the Convection Partial Differential Equation via Laplace Transform
por: Daniela Marian
Publicado: (2021) -
Generalized Ulam-Hyers-Rassias stability of a Cauchy type functional equation
por: Akkouchi,Mohamed
Publicado: (2013) -
New Sufficient Conditions to Ulam Stabilities for a Class of Higher Order Integro-Differential Equations
por: Alberto M. Simões, et al.
Publicado: (2021) -
GENERALIZED ULAM-HYERS STABILITIES OF QUARTIC DERIVATIONS ON BANACH ALGEBRAS
por: Eshaghi Gordji,M, et al.
Publicado: (2010) -
Hyers-Ulam stability of n th order linear differential equation
por: Murali,R., et al.
Publicado: (2019)