Two-Stage Spatiotemporal Context Refinement Network for Precipitation Nowcasting
Precipitation nowcasting by radar echo extrapolation using machine learning algorithms is a field worthy of further study, since rainfall prediction is essential in work and life. Current methods of predicting the radar echo images need further improvement in prediction accuracy as well as in presen...
Guardado en:
Autores principales: | Dan Niu, Junhao Huang, Zengliang Zang, Liujia Xu, Hongshu Che, Yuanqing Tang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/91fc300347da4d7ead39ef8829b57cc5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Determining Number of Factors in Dynamic Factor Models Contributing to GDP Nowcasting
por: Jiayi Luo, et al.
Publicado: (2021) -
Changes of Extreme Precipitation and Possible Influence of ENSO Events in a Humid Basin in China
por: Xiaoxia Yang, et al.
Publicado: (2021) -
KeyMemoryRNN: A Flexible Prediction Framework for Spatiotemporal Prediction Networks
por: Shengchun Wang, et al.
Publicado: (2021) -
Nowcasting India Economic Growth Using a Mixed-Data Sampling (MIDAS) Model (Empirical Study with Economic Policy Uncertainty–Consumer Prices Index)
por: Pradeep Mishra, et al.
Publicado: (2021) -
Distribution of oil refining resources in Russia in the context of the capacity development of refiners and regions
por: Vladimir P. Klepikov, et al.
Publicado: (2021)