Two-Stage Spatiotemporal Context Refinement Network for Precipitation Nowcasting
Precipitation nowcasting by radar echo extrapolation using machine learning algorithms is a field worthy of further study, since rainfall prediction is essential in work and life. Current methods of predicting the radar echo images need further improvement in prediction accuracy as well as in presen...
Enregistré dans:
Auteurs principaux: | Dan Niu, Junhao Huang, Zengliang Zang, Liujia Xu, Hongshu Che, Yuanqing Tang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/91fc300347da4d7ead39ef8829b57cc5 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Determining Number of Factors in Dynamic Factor Models Contributing to GDP Nowcasting
par: Jiayi Luo, et autres
Publié: (2021) -
Changes of Extreme Precipitation and Possible Influence of ENSO Events in a Humid Basin in China
par: Xiaoxia Yang, et autres
Publié: (2021) -
KeyMemoryRNN: A Flexible Prediction Framework for Spatiotemporal Prediction Networks
par: Shengchun Wang, et autres
Publié: (2021) -
Nowcasting India Economic Growth Using a Mixed-Data Sampling (MIDAS) Model (Empirical Study with Economic Policy Uncertainty–Consumer Prices Index)
par: Pradeep Mishra, et autres
Publié: (2021) -
Distribution of oil refining resources in Russia in the context of the capacity development of refiners and regions
par: Vladimir P. Klepikov, et autres
Publié: (2021)