Automated CNN-Based Tooth Segmentation in Cone-Beam CT for Dental Implant Planning
Accurate tooth segmentation is an essential step for reconstructing the three-dimensional tooth models used in various clinical applications. In this paper, we propose a convolutional neural network (CNN) based method for fully-automatic tooth segmentation with multi-phase training and preprocessing...
Guardado en:
Autores principales: | S. Lee, S. Woo, J. Yu, J. Seo, J. Lee, C. Lee |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/9201217d06c044709e92399ac5079d48 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Cone Beam Computed Tomography in the Diagnosis of Dens Invaginatus: Case Report
por: Peyneau,Priscila Dias, et al.
Publicado: (2017) -
Diagnostic Accuracy of Cone-Beam Computed Tomography at Different Tube Voltages for Vertical Root Fractures in Endodontically Treated Teeth with Metallic Posts
por: Hoorieh BashizadehFakhar, et al.
Publicado: (2021) -
Examination of Paramolar Tubercles in Turkish Population Using Cone Beam Computed Tomography
por: Kazak,Magrur, et al.
Publicado: (2017) -
Investigation of the Prevalence of Retromolar Canals: A Cone Beam CT Study
por: Tassoker,Melek, et al.
Publicado: (2017) -
Anatomic Relationships of Mandibular Canal. A Cone Beam CT Study
por: Muñoz,Gonzalo, et al.
Publicado: (2017)